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Abstract

This PhD project focuses on the development and characterisation of a hyperspectral
thermal imaging system. The imaging system is based on a commercial microbolome-
ter sensor, with a sensitivity in the long wave infrared (LWIR) range between 8 and
14 µm, followed by a scanning Fabry-Pérot interferometer (FPI) in front of the collect-
ing optics. The hyperspectral datacube is therefore plane scanned, which allows the
camera to build the hyperspectral datacube while being statically mounted.
The scanning FPI, acting as a wavelength filter, operates in the first order. The most
essential components in the FPI are the thermal mirrors which constitute the focus
of the first part of this thesis. Initial physical vapour deposition (PVD) experiments
provided thermal mirrors that lead to hyperspectral thermal images which docu-
mented the concept of the imager. A mirror was produced by using a recipe which
consisted of three-layer-structure including an absentee layer at the design wave-
length of 10.5 µm. The thermal mirror recipe comprised of an antireflective coated
ZnSe substrate upon which a Ge/BaF2/Ge-coating was deposited. The two mirrors
used in the FPI showed average absorption values of 10.5 % and 6.8 % measured by
standard Fourier transform infrared spectroscopy (FTIR) measurements combined
with a reflection-configured FTIR measurement. The mirrors were incorporated into
an FPI and used to acquire hyperspectral thermal images. It was shown that the
difference in the emission spectrum of five samples of polyimide tape, a carbon
nanotube coated aluminium surface, borosilicate glass, black painted aluminium, and
bare aluminium was measurable at 100 °C as opposed to the measurements of the
emitted thermal radiation at room temperature (RT). The RT measurements were very
inefficient using the high absorption homegrown mirrors, and at the final part of this
project, commercially coated thermal mirrors were purchased and incorporated into
the FPI. These mirrors consist of an antireflective coated ZnSe substrate coated with
a Ge/ThF4/Ge coating with absorption values of <2 % within the sensor sensitivity
range measured by a combination of FTIR and FTIRR measurements. These mirrors
were incorporated into the FPI and used to acquire hyperspectral thermal images. A
logistic regression model was used to differentiate between polyimide tape, Al2O3,



borosilicate glass, fused silica, and Al2O3 ceramic at temperatures as low as 34 °C.
Each material was recognised with true positive rates above 94 %, calculated from the
individual pixel spectrum. The surface temperature of the samples was subsequently
predicted using pre-fitted partial least squares (PLS) models, which predicted all
surface temperature values with a common root mean square error (RMSE) of 1.10 °C
whereby it outperformed conventional thermography.
The last chapter concerns applications of the hyperspectral thermal imaging system
developed in this thesis. Two separate images are analysed and documents a strong
segregation of organic gasses based on transmission spectra, and a promising segre-
gation of polymers based on emission spectra at 100 °C compound temperature.
In summary, it is concluded that an FPI based hyperspectral thermal imager is a viable
instrument for hyperspectral acquisition of light emitted within the LWIR range.



Dansk Resumé

Dette PhD projekt omhandler designet, karakteriseringen og udviklingen af et hyper-
spektralt termografisk kamera. Desuden omhandler projektet analysen af de løbende
tredimensionelle hyperspekrale billeder, som er indfanget i løbed af forskellige stadier
af fornævnte udvikling. Det hyperspektrale termografiske kamera bygger på et Fabry-
Pérot interferometer (FPI) som fungerer som bølgelængde filter af det termiske lys
der optages med kameraet.
En stor del kameraudviklingen drejede sig om produktionen af partielt transmit-
terende spejle til inkorporering i Fabry-Pérot interferometeret, som er blandt de
mest essentielle komponenter i kameraet. Denne udvikling vedrørede pådampning
af tyndfilm på zinkselenid substrater i form af halv- og kvartbølgelængde lag af
skiftende materialer med henholdsvis højt og lavt refraktivt index. En succesfuld
tyndfilmsstruktur bestående af tre lag af henholdsvis germanium/bariumfluorid/ger-
manium blev deponeret på zinkselenid. Spejle af denne type blev inkorporeret it et
FPI og det lykkedes at optage hyperspektrale termografiske billeder. På baggrund af
disse billeder blev det vist at prøver bestående af en høj-emissivitets carbon-nanotube
belagt overflade, aluminium, borosilikatglas, polyimid tape og sortmalet aluminum
kunne skilles ad enkeltvist, baseret på deres termiske udstrålingsspektrum. Dette
eksperiment viser at funktionaliteten i kameraet of understreget at termiske ud-
strålingsspektre kan opsamles med et hyperspektralt termografisk kamera, baseret på
et FPI.
Senere i projektet blev lav-absorptions spejle anskaffet bestående af en tre-lags struktur
af henholdsvis germanium/thoriumfluorid/germanium fra selskabet II-VI Incorpo-
rated. Disse spejle blev brugt til at optage hyperspektrale termografiske billeder med
en nøjagtig materialegenkendelse ned til 34 °C af fem prøver bestående af polyimid
tape, Al2O3, borosilikatglas, kvartsglas og keramisk Al2O3. Materialegenkendelsen
kunne udføres ved 34 °C med korrekt bestemmelse over 94 % af tilfældende. Over
34 °C kunne materialerne bestemmes med 100 % nøjagtighed. Desuden kunne over-
fladetemperaturen af fornævnte prøver bestemmes indenfor en usikkerhed på 1.1 °C
baseret på det termiske udstrålingsspektrum og materialespecifikke temperatur-



modeller.
I slutningen af dette projekt forsøges det hyperspektrale kamera anvendt til genk-
endelse af polymerer opvarmet til 100 °C og separering af transmissions spektret for
specifikke gas-atmosfærer. Begge disse eksperimenter viste lovende resultater. Det
kan dermed konkluderes at det hyperspektrale termografiske kamera udviklet i dette
projekt kan anvendes til nyttefuld avanceret termografisk analyse.
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1

An Introduction to Hyperspectral
Thermal Imaging

Rise above, focus on science.

1



1.1. Motivation

1.1 Motivation

The aim of this PhD project is to understand the field of hyperspectral thermal imaging.
A hyperspectral imaging system functions much like any other imaging system,
however, the produced image is a three-dimensional image containing a continuous
spectrum of all the "colours" present in the image frame. The Finnish company Specim
and the Canadian company Telops are among the very few companies that build
and sell hyperspectral thermal imaging systems. The specific design, benefits and
limitations of each system is discussed later in this introduction. The main focus of this
thesis is the characterisation and development of a Fabry-Pérot based hyperspectral
thermal imaging system with specifications and price-point outside the range of the
previously mentioned commercially available systems. The motivations for building
this system are many, but the main incentive come from the key limitations of
thermography related to the often unknown emissivity of the imaged object. The
emissivity is essential for a correct temperature determination which will be presented
later in this introduction. A hyperspectral thermal imaging system measures the
emissivity indirectly, and it is therefore believed that such system is an important
step in the right direction toward more accurate temperature determination and
thermographic analysis in general.
As we shall see, the development of a hyperspectral thermal imaging system filtering
light using a Fabry-Pérot interferometer (FPI) is indeed a viable solution. While the
laws of physics do not prevent an FPI based hyperspectral imaging system to be built,
only few attempts have been reported in the literature. As any experimentalist would
know, the path between theory and practice is filled with obstacles, and therefore,
starting out this project a list of success criteria was formulated. These criteria were:

• Design of a variable filter with a narrow transmission peak in the 8-14 µm range.

• Design of dielectric mirrors for a FPI with a high reflection in the 8-14 µm
wavelength range using mathematical modelling. The FPI should have an
effective bandpass with at least 60 % transmission and less than 1 µm full width
half maximum (FWHM).

• Fabrication of optical components with a mid-infrared sensor in a camera;
recording hyperspectral images with at least 30 distinguishable bands.

• Material and temperature recognition able to determine the material and tem-
perature within 5 %.

2



1.2. Outline

1.2 Outline

Chapter 1 the remaining part of this chapter gives an introduction to the basic areas of
physics which are relevant for understanding the working principle of hyperspectral
imaging in general and thermal imaging specifically. The final part of the chapter
deals with hyperspectral thermal imaging and serves an overview of our imaging
system which is the main part of this thesis.

Chapter 2 provides a description of the working principle behind the main experimen-
tal techniques used during the project. The experimental techniques relate primarily
to the FPI mirror development which took place in the cleanroom facilities at the
Mads Clausen Institute at SDU in Sønderborg.

Chapter 3 provides experimental results and discussions regarding the develop-
ment of FPI mirrors that can be integrated into a hyperspectral thermal imaging
system. Additionally, the chapter includes the characterisation of the commercially
available FPI mirror options acquired from the companies Giai Photonics and II-VI
Incorporated. All results presented in this chapter are at the time of submitting this
thesis unpublished.

Chapter 4 concerns the hyperspectral thermal imaging system developed at NEWTEC.
The chapter provides a general description of the working principle of the imaging
system as well as the key concepts regarding the physics behind the camera. Several
iterations and developments were made during the three-year period and a selection
of these are included in this chapter. Additionally, the development of a FPI mirror
alignment station is described in detail, which is a key improvement and help during
the assembly of the hyperspectral thermal camera.

Chapter 5 provides a theoretical background of the main algorithms used for the data
analysis of the images obtained. The analysis includes data preprocessing techniques
as well as the post processing algorithms such as principal component analysis (PCA),
K-Means, partial least squares regression (PLS) and the multinomial logistic regression
(MLR) classifier.

Chapter 6 concerns the initial results obtained using the FPI based hyperspectral
thermal imaging system. The data presented in this chapter is based on the FPI
mirrors produced in the cleanroom facilities at SDU and an early version of the

3



1.2. Outline

hyperspectral imaging system capable of acquiring 70 spectral bands. The chapter
presents published results from [2].

Chapter 7 presents a study where the ability to determine the surface temperature of
a selection of samples was investigated. The surface temperature of the samples was
found by initially using an MLR classifier to predict the material measured for each
pixel in the image frame and subsequently predicting the surface temperature us-
ing a material specific PLS model. The chapter presents results due to be published [1].

Chapter 8 presents results obtained in the search for industrial applications for
a hyperspectral thermal imaging system. Two different experiments are presented
where the hyperspectral thermal imaging system is used for measuring the transmis-
sion spectrum through an organic gas atmosphere and the emission spectrum from a
selection of heated polymers. The results presented in this chapter are unpublished.

Chapter 9 provides a general summary of the key results presented throughout
this thesis. Additionally, an outlook is included which discusses further development
of the hyperspectral thermal imaging system, as well as some of the remaining barri-
ers which need to be overcome in order to have a fully functioning and reliable system.

And here we go. Enjoy!
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1.3. Introduction

1.3 Introduction

Starting out in elementary school, the first principles taught in the physics classroom
revolve around the periodic table of the elements and that atoms constitute the
main building blocks of our universe. Moving on in life, the principles and laws of
physics become increasingly complex and move from classical mechanics to quantum
mechanics mixing up the relationship between mathematics and physics. That
development does not, however, change the facts taught in elementary school, i.e.
that the world consists of atoms interacting with the surrounding world. The possible
interactions between atoms are limited and controlled by the four natural forces.
The electromagnetic force, the strong nuclear force, the weak nuclear force, and the
gravitational force. This thesis will primarily revolve around the electromagnetic force
dealing with light matter interactions.
The increased complexity in our modern world calls for new methods for all different
kinds of remote sensing spanning from the surveillance of crops and fields to medical
diagnostics, and quality assurance within industrial processes. Thus, light sensors
and cameras play important parts in the society at present day and continues to find
new use cases within research and development and the industry.
This thesis specifically revolves around the characterisation and development of a
hyperspectral thermal imaging system. The camera is based on a first order scanning
Fabry-Pérot interferometer capable of filtering the light in the thermal range from
8-14 µm.
While this may sound complex to some at this point, the meaning and purpose of the
following thesis is to ease the task of understanding the above paragraph for anyone.

1.4 The Electromagnetic Spectrum

Images of objects can be acquired through a wide variety of instruments and tech-
niques, some of which will be introduced in Chapter 2, the most common way of
constructing an image is through the collection of light. Our eyes collect light all
the time and an image of the surrounding world is created as a complex biological
process in the brain when we are awake. A complex digital and physical process
which is very similar to the one in the human eye and brain, happens when we use
our smartphones to grab an everlasting image as a memory of our surroundings.
Both processes involve the collection of photons within the visible part of the electro-
magnetic spectrum. Thus, the visible region of the electromagnetic spectrum equals
the range of different photons that we as human beings can perceive.
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Figure 1.1: The electromagnetic spectrum with the high frequency, short wavelength
(high energy) range to the left and low frequency, long wavelengths (low energy) to
the right. The high energy region include gamma-rays, X-rays and ultraviolet light
and the low energy region include thermal infrared, microwaves and radio waves. In
between these regions lie the visible range of light. [5]

Having a visible part of the electromagnetic spectrum implies that there is also an in-
visible part. While the invisible part of the electromagnetic spectrum sounds thrilling,
the invisible part of the electromagnetic spectrum has been divided into subgroups
describing their uses and applications in our modern world. Figure 1.1 show a sketch
of the electromagnetic spectrum and its subgroups outside of the visible light range.
The sketch is sorted by both the wavelength and frequency of the light which follows
the relations

f =
c
l

, or f =
E
h

, or E =
hc
l

where f , is the light frequency, c = 299 792 458 m s�1 is the speed of light in vacuum,
l is the wavelength, E is the light energy, and h = 6.626⇥ 10�34 m2 kg s�1 is Planck’s
constant. Looking at these equations it is immediately clear that the frequency and
energy are inversely proportional to the wavelength. Since this project focuses on
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the long wave infrared light and more specifically the 8-14 µm range, it should be
noted that this light has low energy compared to the light visible to the human eye.
The low energy of infrared photons is a significant drawback since it complicates the
development of electron-hole excitation band gap detectors for this energy region.
Bandgap detectors are desired due to their high sensitivity and efficiency.

1.5 Multispectral and Hyperspectral Imaging

Hyperspectral imaging was formally invented by Alexander Goetz as part of his work
during the 1970’s [6]. The working principle of hyperspectral imaging is illustrated in
Figure 1.2. While a conventional image contains information in two dimensions, a
hyperspectral image adds a third spectral dimension, and thereby the data structure
gathered using a hyperspectral imager typically consists of a three-dimensional image
cube. Most people never think about three-dimensional images, but almost everybody
uses such images in their daily lives. Specifically, a standard image grabbed with a
modern smartphone can be interpreted as a three-dimensional image, namely three
two-dimensional images stacked on top of each other to form a single colour image.
These images are commonly called RGB, where RGB is short for the three colours
detectable by the human eye, namely red, green and blue. As with the smartphone,
the human eye only detects red, green, and blue light and all other colours are
perceived by the brain. A hyperspectral image does not differ much from an RGB
image since the hyperspectral image consists of multiple images of different colours
stacked on top of each other. A hyperspectral image cube can be constructed through
several pathways. The three most common hyperspectral imaging types are the spatial
scanning cameras, the spectral scanning cameras, and the non-scanning cameras. The
spatial scanning cameras are often called line-scan or push broom cameras, and they
function through the use of a diffracting element which scatters the incoming light
onto the sensor focal plane array (FPA). Since most sensors have two dimensions, it is
only possible to image one line at a time, which explains the name line-scan camera. A
typical example of a spatial scanning setup is shown in Figures 1.2 A and B, where A
shows a point scanning camera, and B shows a line-scanning camera. Both methods
can construct a hyperspectral datacube by either moving the object imaged or moving
the imager itself. Next in line is the plane-scanning hyperspectral imager and the
working principle of this type is sketched in Figure 1.2 C. In this specific example,
a filter on a rotating wheel is used to filter out most of the incoming light letting
only a selected band or portion through. The hyperspectral datacube is constructed
following the turning of the rotating wheel and the subsequent acquisition of an
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Figure 1.2: Graphical representation of the working principle of four hyperspectral
imaging systems. (A) The working principle of a point scanning imager where the
light spectrum of a single point is diffracted onto a linear sensor array. Noting the
physical point of measurement, an entire array can be raster scanned, building a
hyperspectral image. (B) The working principle of a line scanning setup where the
spectrum of a single line is diffracted onto a two dimensional sensor. A hyperspectral
imaging cube can be built by continously acquiring images while the imaged line
is scanned a physical distance. (C) The working principle of a spectral scanning
hyperspectral imager. The field of view of the imaging setup is altered by bandpass
filters on the rotating wheel. Grabbing an image at multiple bandpass filters allows
the hyperspectral image cube to be built up along the spectral axis whereas the object
imaged is static. (D) The working principle of the snapshot imaging system where
the entire hyperspectral image cube is built within a single snapshot with multiple
difracting elements and a large two-dimensional sensor array. The three-dimensional
datacube is typically constructed post-acquisition through computational imaging.[7]
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image for every filter available. Figure 1.2 D shows the principle of a snapshot
hyperspectral imager where the entire datacube is constructed in a single imaging
event. A snapshot hyperspectral camera can be highly beneficial since the entire
hyperspectral datacube is collected in a single image frame. This dramatically increase
the speed of acquisition, however, the complexity of the optical system is increased
along with the datacube construction and requirements for the sensor size which are
the main reason why few snapshot hyperspectral cameras are available.

1.6 Thermal Imaging

Thermal imaging utilises Planck’s law which dictates that all objects emit light, if the
object temperature is above absolute zero. Planck’s law, which can be derived from
statistical thermodynamics, states that radiation is emitted continuously by matter
and has a smooth continuous spectrum at all possible energy levels. Planck’s law is
given by

B(l, T) =
2phc2

l5
1

exp
⇣

hc
lkT

⌘
� 1

(1.1)

B is the spectral radiance at wavelength l and Temperature T. c = 299 792 458 m s�1

is the speed of light, h = 6.626⇥ 10�34 m2 kg s�1 is the Planck’s constant, and k =
1.381⇥ 10�23 m kg2 s�2 K�1 is the Boltzmann constant. Figure 1.3 (A) shows the
spectral radiance of a perfect black body at elevated temperatures. Remembering
from Figure 1.1 that visible light has a wavelength in the range 0.4-0.7 µm it is
concluded that most of this light is not visible to the human eye until the object
at hand reaches a temperature of several hundred degrees celsius. The radiance is
concentrated around longer wavelengths (and lower energy) than the visible light and
the as shown in Figure 1.1 this region is labelled the infrared (IR). The IR-range is
often divided into sub-groups, such as the Near IR (NIR), short wave IR (SWIR), mid
IR (MIR), and long wave IR (LWIR). The main focus of this thesis is the LWIR, which
often is labelled the 8-25 µm region. This region is considered the thermal region of
the electromagnetic spectrum, as most objects naturally emit light at temperatures
near room temperature. The mean temperature of the earth is ⇠ 14 °C [8], and plotting
the spectral radiance at temperatures �20-100 °C results in Figure 1.3 (B). This Figure
shows the Planck distribution of a perfect black body near room temperature, which
emulates the most likely theoretical distributions from objects in nature. Here it is
seen that the peak position of the Planck distribution moves out of the plotting range
set to 8-14 µm for the two most extreme temperatures.
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Figure 1.3: (A) A plot of the spectral radiance of a perfect emitter versus the wave-
length of the emitted light is shown. The spectral radiance is plotted for emitter
temperatures of 100, 300, 500, and 700 °C. The spectral radiance has the shape of the
Planck distribution. (B) The spectral radiance is plotted versus wavelength for emitter
temperatures between �80-100 °C in increments of 30 °C.

Theoretically, we can use Planck’s law to derive the temperature of a given material
by finding dBl

dl = 0, the theoretically derived result is

lmax =
2898 µm K�1

T
, T =

2898 µm K�1

lmax
(1.2)

and is commonly known as Wien’s displacement law. This is a very useful law, since
it gives a very simple pathway to finding the exact temperature of an object emitting
light according to Planck’s law. Constructing an instrument which measures the
Planck distribution, finds the peak wavelength, and returns the temperature should
therefore in theory be relatively straight forward. Unfortunately, the world is not that
simple and most objects and materials in nature do not follow the Planck distribution
of a perfect black body. The radiance of materials and objects in nature is modified by
a physical quantity known as the emissivity. The emissivity is a factor describing a
material or objects deviation from the ideal black body distribution. Since no material
can naturally emit more light than the black body distribution dictates, the emissivity
is a quantity less than unity which in the following will be termed 0  e  1.
The emissivity is a wavelength-dependent parameter with values dependent on
physical phenomena such as the intrinsic band gap, vibrational and rotational energies
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of gas molecules, and the physical structure of the surface. Therefore, taking the
emissivity of an object into account, the actual radiance from such object can be
reduced to the following:

Radiance from any object at any given l : B(l, T) · e(l) (1.3)

i.e. it is clear that Wien’s displacement law is no longer a viable option for determining
the temperature by measuring the peak radiance of the black body emission. The
emissivity could be significantly lower around the peak emission wavelength thereby
creating a false peak position.
Within thermography in general, the emissivity is the main contributing factor to
temperature misreadings, besides human errors. Thermal imaging cameras usually
measure the thermal light radiated within a given wavelength range limited by the
sensor sensitivity. The sensors are typically designed with sensitivities within two
atmospheric windows. The first atmospheric window lies spectrally around 4 µm
±1 µm, and it is limited by the light absorbed by a combination of water vapour and
CO2 in the atmosphere. The second window lies within the range 8-14 µm, and it is
limited first by the absorption of water in the atmosphere (at l < 8 µm) and, secondly,
by the absorption of CO2 in the atmosphere (at l > 14 µm). This thesis focuses on the
LWIR and these sensor types therefore measure the spectral radiance in this range,
denoted BLWIR, given by

BLWIR =
Z 14 µm

8 µm
B(l, T)dl (1.4)

Equation 1.4 shows that thermal imaging cameras measure the temperature through
the total amount of light emitted in the LWIR. Now moving one step closer to reality
it is again seen that if adding emissivity to the equation, when dealing with everyday
objects and materials, the exact temperature of the object under investigation becomes
unpredictable, if the emissivity of the object is unknown since an underdetermined
equation system is created

BLWIR =
Z 14 µm

8 µm
B(l, T)e(l)dl (1.5)

Using a conventional thermal imager, the intensity measured can then be calibrated
to reveal the temperature of the object under investigation. However, this calibration
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fails given that the emissivity across the wavelength range changes for two different
objects. Typically, the mean emissivity of materials can be found as a table value,
however, the surface structure of the material under investigation can alter this value
and alleviate the temperature prediction error, within conventional thermography.
Building a handheld camera capable of measuring the spectral radiance, B(l, T), at
discrete wavelengths within the LWIR region would provide a method for estimating
the emissivity at those exact wavelengths. Being able to measure the emissivity would
bring us one step closer to an accurate temperature determination, since B(l, T) is
well described by theory. That is the exact purpose of our hyperspectral thermal
imaging camera.
The following sections will cover the three most common sensor types available for
thermal imaging. These are the quantum well infrared photodetector (QWIP), the
mercury cadmium telluride detector (MCT), and the microbolometer detector. Lastly,
a brief summary of the current state of hyperspectral thermal imaging is summarised
before reaching the core of this project.

The Mercury Cadmium Telluride Detector

Mercury Cadmium Telluride (MCT) sensors are electronic interband transition de-
tector and therefore, they rely on the excitement of electrons from the valence band
to the conduction band. In the thermal range, these band gaps are extremely small.
With an energy value equivalent to 0.1550-0.0886 eV for 8-14 µm light the band gap
of the detector would need to be lower than this value, to detect the photon. This
energy level is comparable to the thermal energy at room temperature (0.0259 eV
at 300 K), and thus, in order to minimise the spontaneous measurement of signals
from thermally excited electrons, the MCT sensors must be cooled. Typically, these
sensor types are cryogenically cooled to 77 K using either liquid nitrogen or advanced
Stirling cycle coolers. Since MCT sensors are electronic interband transition sensors,
the sensitivity of the sensors is very high. These devices are typically low resolution
and high priced.

The Quantum Well Infrared Photodetector

The QWIP detector is typically made of the semiconductors gallium and arsenide
which, mixed in the right ratio, produce quantum wells between the band gap which
most commonly is much wider than the energy of the infrared light. The ground
states in the quantum wells of the conduction band are typically filled by n-doping,
and the infrared light can be detected as photocurrent, as the electron is excited to its
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first excited state. Typically, this energy is designed to match the energy of the infrared
light.[9, 10, 11, 12] This kind of energy transition is typically named an intersubband
transition, and it is also highly affected by spontaneous thermal excitation, du to the
low energy required for exciting the ground state quantum well electron. Thus, the
QWIP requires cooling at cryogenic temperatures as well, which make both the MCT
and the QWIP detector ill suited for low cost mobile applications.

The Microbolometer Detector

The relatively cheap and reliable alternative to MCT detectors is microbolometer
sensors which commonly is operated at room temperature. The microbolometer
utilises the principles of the second law of thermodynamics which states that:

"The spontaneous flow of energy stops when a system is at, or very near, its most likely
macrostate, that is, the macrostate with the greatest multiplicity." [13]

Now without diving too deeply into thermodynamics and the concept of entropy, the
meaning is that when two objects are in thermal equilibrium, the system has reached
its steady state. This concept is utilised in a microbolometer sensor where the heat
exchange between the two systems happen in the form of the interaction of light. As
explained in section 1.6, any object with a temperature above absolute zero emits light
which ultimately reduces the temperature of the object. The microbolometer sensor
absorbs the light, which, however, leads to the microbolometer heating up itself. The
laws of physics apply to the bolometer pixel as well, and therefore, at temperatures
above absolute zero, the bolometer pixel emits radiation. Given enough time, this
system reaches a thermal equilibrium where the light emitted by the bolometer pixel
equals the light absorbed by the bolometer pixel. At this point the pixel is read out.
The signal measured in the bolometer pixel is altered by the bolometric effect, which
is defined as the resistivity change within a material caused by the material heating.
As mentioned the pixels heat up from incoming long wave radiation and the electric
signal, measured as the current running through each pixel, is therefore directly
related to the amount of radiation absorbed by the individual pixel. A sketch of a
typical microbolometer design is shown in Figure 1.4. The pixel design consists of a
highly reflecting layer on the back-plane of the bolometer. The bolometric absorber
is placed in suspension above this reflecting layer and is connected to the read out
circuit through vertical wires. A design like this allows the thermal radiation to reflect
multiple times between the absorber and the reflector.
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Figure 1.4: A sketch of a typical microbolometer. The absorber and thermometer is
suspended above a reflecting back plate which allow the thermal light to heat up the
thermometer. As the temperature of the thermometer changes, the current running
through the bolometer changes as well. This change in current is measured by the
ROIC through the electrical connections as a measure for the radiance.

1.7 Hyperspectral Thermal Imaging

All of the above mentioned types of infrared detectors have been used in various
hyperspectral thermal imaging applications, and a few of these will be summarised
here. The most complex hyperspectral thermal imaging systems are developed by
NASA and these are either mounted in satellites such as the HyspIRI [14, 15] or an
airplane as the HyTES [16]. Both of these instruments rely on cryogenically cooled
QWIP sensors, and are high cost and high resolution instruments. Having left the
atmosphere of the earth it should be mentioned that the mars rovers spirit and
opportunity both were equipped with thermal emission spectrometers. Both of these
were used to characterise and investigate the mineral and rock formations on Mars
[17, 18, 19].
Besides space and airborne applications the field of hyperspectral thermal imaging
is limited. A reason for this could be the limited commercial options. The Finnish
company Specim provides two variants namely the Spectral Camera LWIR HS and
the Spectral Camera OWL [20]. Both cameras are made from thermal spectrographs
which refract the long wavelength light directly onto the sensor. The two cameras
differ in that one is equipped with a cooled MCT sensor and the other with an
uncooled bolometer sensor. Due to the choice of optical system, both cameras are
line-scan cameras which require movement to function properly as mentioned in
section 1.5.
The HyperCam-LW is available from the Canadian company Telops and this system
is based on a Michelson interferometer and an MCT detector functioning in the
7.7-11.8 µm. The HyperCam-LW has a very high spectral resolution but a much lower
imaging resolution of 320x256 pixels compared to. The system has been shown to have
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applications within defence and strategy[21], where detection of thermal radiance
from camouflaged targets is beneficial[22, 23]. Furthermore, a wide range of reports
show the possibility of detecting minerals using the HyperCam-LW based on the
spectral features of these materials within the sensitivity range [24, 25, 26, 27]. Aside
from commercial solution a few custom solutions has been built and used within
medicine quality assurance[28] and pathogen detection[29].

1.8 Overview of our Hyperspectral Thermal Imaging System

At this point it should be clear that the applications for a hyperspectral thermal imag-
ing system spans a wide variety of fields. The price point of the Telops HyperCam-LW
is reflected by the use of a cryogenically cooled MCT detector and a complex Michel-
son optical system. As mentioned the goal of this thesis is the development of a
Fabry-Pérot based hyperspectral imaging system and the sensor of choice is the
microbolometer. A demonstration of a Fabry-Pérot based hyperspectral imager has
been reported previously [30] based on an MCT detector. Additionally, recent studies
have reported the applicability of microbolometer sensors in hyperspectral thermal
imaging systems. With that being said, no previous study has been found that com-
bines the much cheaper bolometer sensor with the Fabry-Pérot interferometer which
is reported in this thesis. For now, it is important to remember that the camera system
in this project is a plane-wave hyperspectral imaging system building on four main
components. These are the following:

• A scanning Fabry-Perot Interferometer acting as the image plane wavelength
filter necessary for building the hyperspectral datacube.

• A focusing optical system

• A microbolometer sensor with sensitivity in the range 8-14 µm

• A QTechnology camera body capable of building and processing the hyperspec-
tral datacube

The Hyperspectral Thermal Imaging Data Structure

It is of highest priority to define the data structure which is the typical result of a
hyperspectral thermal imaging (HSTI) acquisition event. By now it should be clear
that our hyperspectral thermal imaging camera is a plane-wave scanning device,
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which constructs three-dimensional datacubes. Throughout this thesis a matrix is
denoted as a capital letter in bold, and thus the datacubes are defined as

Full datacube: Lxi ,yj ,lk (1.6)

In the following sections the size of L is thus given by x⇥ y⇥ l, individual entries are
denoted xi, yj, and lk and the full length of an axis in any of the three dimensions is
given by an asterix, ⇤. Most often the analysis revolves around an individual spectrum
measured from the radiance of a single object in a single pixel of the microbolometer
sensor, and this spectrum will therefore be selected as:

Single spectrum: Lxi ,yj ,⇤ (1.7)

The following chapters, 2 and 3 deal with the experimental techniques necessary for
the FPI mirror development and the actual development of the mirrors, respectively.
An elaboration of the camera components and working principle follows in Chapter
4.
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2

Experimental Methods for Dielectric
Mirror Deposition and
Characterisation

The first section of the following chapter is devoted to a description of the working
principle of the FPI itself, which is one of the four key components in the imaging
system. The section elaborates the theory behind the FPI as a wavelength filter and
underline the importance of the properties of the FPI mirrors. The remaining part of
the chapter focuses on the working principle and physics behind the experimental
techniques used during this project. The techniques have been employed in the FPI
mirror development which is the main topic of Chapter 3. The description focuses
primarily on the aspects of the techniques that are relevant to the experimental work
of this project.
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Figure 2.1: (A) Sketch of a typical Fabry-Pérot interferometer with two mirror sub-
strates coated with reflective coatings. The two mirrors are arranged such that the
reflective coatings are parallel and spacers are inserted which keep a certain mirror
separation. (B) In the description and calculation of the theory of the Fabry-Pérot
interferometer each mirror can be treated as a single interface (mirror a and mirror b).
A fraction of the incident light is let into the cavity (Ta) and the light reaching mirror
b is divided in two fractions given by the reflectivity, R+

b , and transmittivity, Tb. The
back reflected light from mirror b is reflected again by mirror a, R�a .

2.1 The Fabry Pérot Interferometer (FPI)

The FPI is one of the four main components of our hyperspectral thermal camera and
it is therefore of highest importance to understand the basic physics behind. It is used
as a tunable bandpass filter which sort the incoming LWIR radiation into discrete
wavelengths. It is placed in the optical path of the incoming thermal light in order to
create the individual image planes in the hyperspectral datacube.
The FPI was first described in 1899 by Charles Fabry and Alfred Pérot [31]. It consists
of two ideally flat and parallel partially transmitting and reflecting mirrors separated
by a distance which throughout this thesis will be referred to as the mirror separation
(MS). In real life the FPI often looks like the sketch shown in Figure 2.1 (A) which
show two transparent substrates with reflecting coatings separated by spacers. A
sketch of the theoretical setup is shown in Figure 2.1 (B) where the solid vertical lines
indicate each mirror. A theoretical description of the collective transmission of two
partially reflecting, parallel mirrors including multiple reflections can be described
as[32]
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T =
TaTb

[1� (R�a R+
b )

1/2]2

"
1 +

4(R�a R+
b )

1/2

[1� (R�a R+
b )

1/2]2
sin2

✓
fa + fb

2
� d

◆#�1

, (2.1)

with T being the total transmitted light, Ta the fraction transmitted from mirror a,
Tb the fraction transmitted from mirror b, R�a the reflected fraction from mirror a,
and R+

b the reflected fraction from mirror b.fa equals the phase shift at mirror a and
fb equals the phase shift at mirror b while d = (2pns MS cos(q)/l, with ns and MS
being the refractive index of the spacer layer and MS being the mirror separation
distance. qs equals the angle of incidence for the plane wave. This equation allows
the system as a whole to be described based on its effective performance. Thus a
multilayer coating can be described based on a single effective layer. Additionally,
the equation takes multiple reflections into account, and it is therefore ideal for the
description of the theory of an FPI.
Often the two mirrors within a FPI have identical properties, and continuing with this
assumption the above equation can be simplified by:

T =
T2

s
(1� Rs)2

1
1 + [4Rs/(1� Rs)2] sin2 d

(2.2)

This equation is simplified by defining

F =
4Rs

(1� Rs)2 . (2.3)

This expression is sometimes abbreviated the coefficient of ’finesse’, where the finesse
is defined as the the ratio of the separation of two adjacent fringes to their full with
at half maximum (FWHM). The effect of F becomes clear in a few steps, but first
equation 2.2 is shortened to

T =
T2

s
(1� Rs)2

1
1 + F sin2 d

. (2.4)

Now, if we assume that the absorption in the FPI mirrors is non-existing, which is
a quality highly wanted for FPI mirrors, the following is true for the reflection and
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Figure 2.2: (A) Theoretical transmission of a Fabry-Pérot interferometer with mirrors
having a reflectivity of 70 %, 80 %, 90 % and 99 %. (B) Theoretical transmission of
a Fabry-Pérot interferometer with mirrors having 87 % reflectivity and absorption
values of 0.00 %, 0.01 %, 0.05 %, and 0.10 %.

transmission:

1� Rs = Ts (2.5)

Substituting 2.5 into equation 2.4 results in

T =
1

1 + F sin2 d
, (2.6)

and it is possible to conclude that as F increases the width of T decreases, and thus
the higher the reflectivity the higher the finesse of the FPI.
Equation 2.6 describes the transmission of the perfect Fabry-Pérot with non-absorbing
mirrors. The equation is plotted in Figure 2.2 (A) as a function of the reflectivity of
the mirrors as well as the value of d plotted as mp where m = l

l0
. The key points

to remember related to this project is the fact that the full width at half maximum
(FWHM) of the transmitted light is directly dependent on the reflectivity of the
mirrors.

1� Rs � As = Ts (2.7)

Solving for Rs and substituting into equation 2.4 the following expression for the
transmission through the FPI is obtained.

20



2.2. Physical Vapour Deposition (PVD)

T =
1

(1 + As/Ts)2
1

1 + F sin2 d
(2.8)

Here, it is observed that the ratio of the absorption versus the transmission of the
mirror substrates is the determining factor for the actual transmission through the
FPI. It is furthermore noted that setting As = 0 we return to equation 2.6 once again.
Figure 2.2 (B) shows the behaviour of equation 2.8 as the absorption is changed
of a theoretical mirror substrate with a reflectivity of 87 %. This graph shows that
the transmission percentage drops heavily with increasing absorption of the mirror
substrate. This fact is quite important during the development of dielectric mirror
substrates which is the main topic of the following Chapter 3. Before reaching the
actual development of the semi-reflecting mirrors it is important to understand how
the reflective coating can be made and characterised which is described next.

2.2 Physical Vapour Deposition (PVD)

Physical vapour deposition (PVD) is a common name for the process in which a solid
material is typically vaporised within a vacuum chamber and deposited onto another
material in order to alter the properties of the object as a whole. The properties
in question may be everything from the hardness of the surface to its colour and
appearance, and therefore PVD is highly relevant and can be found in every sector
dealing with physical materials. In fact, chances are high that any reader of this
thesis has a physical object within reach where PVD is a crucial part of the fabrication
process. Relevant objects include gold coatings on jewellery, and colour coatings on
metal parts, including watches and smartphones. While both of these applications
concern aesthetics, PVD is used for critical functionality as well. Examples include
the fabrication of custom sensors, transistors and microchips in general. Furthermore,
sub-nanometer thin and even layers can be deposited to form anti-reflective, reflective,
band-pass, short pass, and long pass coatings for everyday glasses, and filters and
optics in research labs.
In this project PVD is used to make the thin film coating needed for the dielectric
optical filters in the Fabry-Pérot interferometer. The specific design and experiments
involved are discussed in Chapter 3.
All types of depositions are carried out in a specially designed vacuum chamber. The
chamber is equipped with turbo pumps, roughing pumps, pressure gauges, and gas
inlets for sputtering gasses. Typically the vacuum chamber is pumped to a pressure in
the 10⇥ 10�5 mbar range before the evaporation begins. Pumping vacuum inside the
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chamber ensures that the partial pressure of the deposition material is dominant once
a sufficient temperature and vapour pressure from the material is reached. The atoms
and clusters which undergo a phase transition and escape into vacuum will have
kinetic energy roughly equivalent to the temperature of the liquid or solid phase of
the deposition material. Removing most other molecules inside the vacuum chamber
ensures that the kinetic energy is conserved and not lost in collision events. This
means that the speed and direction of the deposition atoms are conserved, and that
the evaporant essentially moves in straight lines between the source and the substrate.

2.2.1 Thermal Evaporation

The simplest type of physical vapour deposition is thermal evaporation. Here a
tantalum boat is typically used to carry the material to be deposited. The tantalum
boat is heated until the material starts to vaporise. Once a vaporising temperature
is reached material starts to flow from the tantalum boat and into the chamber with
a direction and kinetic energy matching the temperature of the boat. The material
clusters with sufficient energy to escape into the gas phase and a direction towards
the substrate will reach the substrate surface and cool down. The material has now
been deposited onto the substrate surface, and given enough time a fully cohesive
thin film will be created.
Thermal evaporation is a technique that can be applied in almost any vacuum
chamber with wire inlets for power supply. The most prominent drawback is that
some materials need to be heated to several hundreds or thousands degrees celsius
in order to reach their vaporising temperature. In these cases e-beam evaporation is
used, which is described in the following section.

2.2.2 E-beam Evaporation

E-beam evaporation is a technique to deposit a material by melting the substrate and
thereby create a gas phase inside the ultra high vacuum (UHV) chamber. Unlike ther-
mal evaporation where the direct heat from a filament is used to heat the deposition
material during e-beam evaporation, a filament is used to create a beam of electrons
which is directed to collide with the deposition material. The heat dissipated in the
deposition material during the slow-down and collisions of the electrons functions as
the primary heating source of the deposition material. A sketch of the typical e-beam
system is shown in Figure 2.3 (A).
Once again the transfer of material takes place as small material clusters escape from
the e-beam crucible and move into the gas phase and reach the substrate surface.
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Figure 2.3: (A) Sketch of the working principle of a typical e-beam evaporation source.
The electrons are generated by a heated filament and are subsequently directed into
the crucible holding the solid evaporant. (B) Sketch of the working principle of a
DC-sputtering setup. A plasma is generated by a strong electric field in combination
with a permanent magnetic field. The ions generated are then bombarded into the
sputtering target upon which atoms and clusters escape with a kinetic energy which
is much higher than during standard vaporisation. The figures have been reprinted
from [33, 34].

2.2.3 Sputtering

During sputtering the evaporated material is released from the solid phase by a bom-
bardment of ions generated from a sputtering gas. The sputtering gas is introduced
to the chamber through a gas inlet. The pressure during deposition is typically higher
than during thermal or e-beam deposition. The sputtering gas is typically an inert
gas such as argon or nitrogen in order to avoid that the gas chemically reacts with the
sputtering target.
Sputtering is a deposition technique where the thin film is grown by substrate ad-
sorption of clusters with a significant kinetic energy. The clusters are created by
ion-bombardment of the target material. Typically a UHV chamber is filled with an
inert ionisation gas, usually argon. See Figure 2.3.
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2.2.4 RF-Sputtering

RF-sputtering was not used directly as a part of this PhD-project, but is mentioned
here for the sake of covering the most important areas within PVD. RF-sputtering
is typically used on non-conducting materials where charges might accumulate and
prohibit the ion bombardment. The plasma is made using a radio frequency power
supply which ensure that charges do not build up on the sputtering target.

2.2.5 Thin Film Thickness Monitoring

During PVD it is normally essential to monitor the thickness of the film deposited,
since the thickness often is a crucial parameter for the property of the thin film. Two
different monitoring systems are commonly used in PVD chambers where the use of
a quartz crystal microbalance is the most common. The other monitoring system is
an optical system, which is much more complex.
The quartz crystal microbalance (QCM) is a technique for monitoring the film thick-
ness. The QCM consists of a piezo crystal upon which a metal surface with a high
sticking coefficient is mounted. The piezo crystal is driven to its resonant frequency,
which is monitored by a frequency controller. The QCM is mounted inside the vac-
uum chamber at a fixed position within the path of flight of the evaporants. The
evaporant will adhere to the QCM during the deposition process and the weight
added alters the resonant frequency of the QCM crystal. By monitoring the resonant
frequency and taking geometric tooling factors into account, direct measure of the
evaporated weight on the substrate can be found.
An optical monitoring system determines the thickness of the thin film by measuring
the interference of light transmitted through the thin film and substrate undergoing
deposition. A system like this can be more precise since it measures the substrate
under deposition directly in real time.

2.3 Scanning Electron Microscopy (SEM)

Scanning Electron Microscopy (SEM) is an imaging technique where electrons are
used as the primary source of information as opposed to more common optical
microscopes where light serves the purpose.
A heated filament or a field emission cathode is used as the electron source. The
electrons, being charged particles, are focused and accelerated using a series of electro-
static lenses into a spot size of a few nanometers. The electron beam is focused onto a
sample substrate and the interaction of the high energy electrons and atoms within the
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sample generates a wide variety of effects. The two processes that are most relevant
for imaging are the production of secondary electrons and backscattered electrons.
Secondary electrons are generated from the inelastic scattering process between the
incident electrons and the core electrons within the sample. The secondary electrons
are therefore lower energy compared to the impinging electrons. This in turn means
that the surface sensitivity of measuring secondary electrons is increased due to lower
inelastic mean free path of low energy electrons. The SEM image is created by focus-
ing the electron beam onto a spot on the surface and raster scanning this beam across
the substrate sample while collecting the generated secondary electrons. The amount
of secondary electrons generated correlates with the Z-number of the substrate as
well as the surface structure. These two factors are the primary contributors to the
contrast in an SEM image.
The secondary electrons are primarily used for for SEM imaging, but the backscat-
tered electrons can be collected as well. These backscattered electrons are the product
of elastic scattering between the impinging electrons and the sample. Therefore,
the kinetic energy of the electrons is maintained which means that this measuring
technique is less surface sensitive. The main reason for measuring backscattered
electrons anyway is a stronger correlation with the Z-number of the sample. This
allows for valuable information on the sample composition.

2.4 Energy Dispersive X-ray Spectroscopy (EDX)

Energy dispersive X-ray spectroscopy (EDX) is a technique for measuring the con-
stituents of a sample. The EDX analyser typically consist of a silicon drift detector
capable of measuring the energy dispersion of incident ionising X-rays. This analyser
is typically placed within an SEM chamber and utilises the X-rays produced as a
consequence of the impinging high energy electrons. As mentioned, the high energy
electrons that inelastically scatter with the sample, produces secondary electrons.
Some of these electrons are the result of core electrons that are excited and released
from their respective nucleus. This process leaves a hole behind in the inner core
shell which can be occupied by an outer shell electron more loosely bound. The
resulting excess of energy is released as emitted X-rays. The energy distribution of
the generated X-rays is dependent on the element which allow for the constituents of
the sample to be found through a database lookup.
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2.5 Fourier Transform Infrared Spectroscopy (FTIR)

Fourier Transform Infrared Spectroscopy (FTIR) is a widely and common technique
for performing spectroscopy in the infrared region. For this thesis it has been a vital
technique for the characterisation and analysis of the optical components functioning
in the LWIR. Therefore, FTIR has frequently been used for characterising the FPI
mirrors used in the hyperspectral imaging system during these studies. An FTIR uses
a Michelson interferometer[35] to measure the intensity of wavelengths in the range
of 4-25 µm. The light of a broadband source is let through a Michelson interferometer
which allow multiple selected wavelengths through the sample compartment. As
the mirror distance within the Michelson interferometer is scanned the combination
of wavelengths let through the interferometer will cover the entire range of the
spectrometer. A fourier-transform based algorithm is then used to calculate and
construct the full spectrum based on single wavelengths.
In its basic configuration the FTIR measures the transmission of any substrate by
relating the intensity of an incoming light beam to the intensity of the same light
beam following a passthrough of the substrate under investigation. This configuration
is sketched in Figure 2.4 (A). The FTIR spectrometer is always calibrated to take the
absorption in the atmosphere of the light beam into account, and thus the spectrum
gathered represent the light transmitted through the sample. Thus, based on the law
of energy conservation the following statement is true for our sample in the FTIR
spectrometer.

|Etotal | = 1 = Ts + As + Rs + Ss (2.9)

Here, |Etotal | represent the total intensity of the light and Ts, As, Rs, and Ss represent
the transmitted, absorbed, reflected and scattered fractions of the incident light
respectively. These four contributions are the only pathways for the light, and
normally, dealing with flat and non-corrugated optics the scattered fraction of the
light is assumed to be negligible. Thus, according to Figure 2.4 (A) the measured
spectrum in this configuration reveals information about the transmission of our
sample, Ts, as mentioned. Normally, the transmission spectrum would be enough
to reveal information about e.g. chemical species, since it would be assumed that
the reflectivity is wavelength independent which leaves an implicit measurement of
the absorption within the sample due to vibrational and rotational modes. During
these studies a detailed analysis of the reflectivity of the measured samples was
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Figure 2.4: Graphical representation of two different configurations for measuring
spectroscopy in the infrared region. (A) Conventional transmission FTIR where the
light beam path of the infrared light travels directly through the sample compartment
to the analyser. (B) reflection configured FTIRR where the light beam path is reflected
through a set of mirrors onto the sample surface and thereafter reflected towards the
analyser at the other end of the sample compartment.

needed, and therefore the transmission measurements were supported by reflection
measurements as elaborated in the following section.

2.5.1 Reflectance Fourier Transform Infrared Spectroscopy (FTIRR)

In order to do reflection based infrared spectroscopy of the optical substrates used
in this study an SRM-8000A reflection accessory was bought from Shimadzu. In the
following sections, these measurements will be referred to as FTIRR measurements.
The optical path of the light let into the FTIR sample compartment is directed
perpendicular to the incident light through a set of mirrors as sketched in Figure 2.4
(B). Placing the sample on top of the accessory compartment the reflected light from
the sample surface is once again directed towards the analyser to be measured. Taking
the longer beam path into account during calibration a full spectrum of the reflectivity
of the sample surface is now found. This reduces equation 2.9 to two unknowns
which are the absorption and scattered fractions of light. Once again, assuming
that the scattered fraction of the light is negligible, the absorption of the sample
under investigation can be found based on an FTIR and the FTIRR measurement.
The assumption that the scattered fraction of the light is negligible is not necessarily
good and cannot be applied as a general rule for all surfaces. In our application the
scattered and absorbed light are both pathways to the loss of light and therefore the
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distinction between the two is of little importance.
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3

A First Order Scanning Fabry-Pérot
Interferometer

This chapter focuses on the physical vapour deposition experiments related to the
production of mirrors capable of being incorporated in a low order thermal FPI.
The results presented in this chapter stretches over several years of the project and
describes the pursuit for low absorption dielectric partially reflecting mirrors.
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3.1 The Development of a Partially Reflective Coating for the
LWIR

A multilayer structure of high and low refractive indices is needed in order to produce
a highly reflecting coating. For this project, high reflectivity is needed in the range
8-14 µm in order to utilise the entire sensitive region of the microbolometer sensor.
Since the mirrors must be partially transmitting, it is essential to consider only
transparent materials in the infrared region. These materials are typically insulators
or semiconductors since the band gap in such materials ensures that the range of light
with an energy lower than the band gap energy passes through the material. Typical
semiconductors transparent in the infrared region include silicon and germanium
which have band gap energies of 1.13 eV and 0.75 eV corresponding to light with
wavelengths of 1.1 µm and 1.65 µm, respectively [36]. The relatively high refractive
index of silicon and germanium of 3.5 and 4.0, makes both materials ideal candidates
for the high index material in a coating design with interchanging high and low
index materials. Other possibilities for the high index material include tellurium
with a refractive index of 4.8 at 10 µm [37, 38, 39] and lead telluride with a refractive
index of 5.6 at 10 µm[40, 41, 42, 43, 44]. Tellurium and lead telluride both have optical
transmission up to 14 µm and low absorption [45]. For this project, germanium was
chosen as the high index material since the deposition parameters is widely accessable.
Additionally, germanium has a relatively flat transmission at wavelengths up to 14 µm
in contrast to pure silicon.
Fluoride compounds are typically used for the low index material in an infrared
optical coating. Fluorides are chemically extremely stable, which means that they
do not decompose over time [46]. Provided that the stoichiometry of the fluoride is
kept, the chemical stability reduces absorption, which is essential for the application
in a Fabry-Pérot or experiments including high energy lasers where low absorption
is critical. One of the most common materials to use for the low index layer in a
multilayer coating is ThF4. Though ThF4 is the most commonly used material within
the industry, it was not allowed to conduct experiments in the facilities at hand with
this material because it is radioactive. Deposited layers of ThF4 are dense, stable
and can have low absorption, however the radioactive nature of thorium also makes
it a non-ideal material for consumer products. Although the radioactivity can be
controlled by depositing a thick top layer, which inhibits the alpha particles from
penetrating [47], a development started in the 1980s towards finding a non-radioactive
replacement[48, 49, 50]. These studies resulted in the use of a wider variety of
fluorides such as MgF2, CeF3 and fluoride mixtures. This will be elaborated later in
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Figure 3.1: (A) Theoretical simulations of mirror coatings based on the three coating
designs shown in Table 3.1. (B) Sketch of the result of too much tensile stress in the
coated thin film. The bending substrates change the optical path difference between
two mirrors, which is crucial for the FPI application.

this chapter, but first the structural design and thicknesses of the coating layers must
be determined.

3.1.1 Thin Film Coating Design

An earlier attempt at designing a first order FPI have been made using a mirror recipe
of alternating layers of sinc sulfide and germanium [51]. This mirror recipe consist
of a four layer structure of quarter wave optical thicknesses (QWOT). The optical
thickness (OT) is given by

OT = n(l) · Tm (3.1)

with n(l) being the refractive index assumed to be constant throughout the thickness
of the film, and Tm being the physical thickness of the film. Ideally the transmission
curve for a single mirror in our application should be flat in the range from 8-14 µm.
This coating can be achieved by using a number of QWOT layers, where the amount
of layers increases to achieve a very high reflecting coating [52]. In our application it
is preferable to keep the number of layers at a minimum. The first reason is that we
do not aim for a very high reflecting coating, cf. the theory of the FPI introduced in
section 2.1 and more specifically equation 2.3. The equation shows that the reflectivity
of the FPI mirrors increases the finesse of the transmission profile which lowers the
intensity that is let through the FPI. While the increased finesse essentially improves
the spectral resolution it also significantly decreases the signal measured due to the
lower FWHM. The second reason is that it is important to minimise the number of
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thin film layers since the thin films typically have an intrinsic tensile stress which is
strong enough to bend the substrate at a microscopical level. This phenomenon is
sketched in Figure 3.1 (B) where two identical FPI mirrors with a three-layer-coating
have been stacked. Due to the physical bending of the substrates, the optical path
difference (OPD) of the light multiple reflected in the center of the FPI assembly
differs from the light in the edge, and thus

OPD1 6= OPD2 (3.2)

The non-equal OPD has a broadening effect on the light transmitted by the FPI due to
the distribution of mirror separations caused by the substrate bending. The shape
of the band transmitted is therefore a function of the curve of the individual mirror
substrates. It is therefore vital to keep the ZnSe substrates flat, and the best way of
doing so is keeping the number of layers in the optical coating at a minimum.
At the beginning of this project two substrates were produced based on a three-layer-
coating consisting of germanium and barium fluoride. The dielectric layer stack was
made from a design of an initial half wavelength layer and two quarter wavelength
layers. The physical thicknesses of the mirror design are listed in Table 3.1 as Design
1.

Design 1 Design 2 Design 3
Material OT Physical thickness OT physical thickness Material OT physical thickness

Ge 1/4 wave 0.656 µm 1/4 wave 0.656 µm - - -
BaF2 1/4 wave 1.836 µm 1/4 wave 1.836 µm Ge 1/4 wave 0.656
Ge 1/2 wave 1.315 µm 1/4 wave 0.656 µm BaF2 1/4 wave 1.836

ZnSe Inf 5 mm Inf 5 mm Inf 5 mm

Table 3.1: Table summarising the three different FPI mirror design recipes considered
for the thermal hyperspectral imaging project. BaF2 has in this case been used as the
second layer consisting of a low refractive index material, and germanium has been
used for the high refractive index material as specific examples. It is important to
note, however, that the optical thickness is the important physical quantity.

It was chosen to design the optical coating based on a wavelength of 10.5 µm and at
this wavelength the initial 1/2 wave germanium layer has no effect. A half wavelength
layer is sometimes abbreviated an absentee layer, and although it has no effect at the
design wavelength, it broadens the reflective region around the design wavelength
[36]. Therefore, while a thick layer of germanium is added to the substrate, the
average reflectivity of the coating remains relatively high at a theoretical average
value of 13.6 %, and the total number of layers are kept relatively low. The optical
properties of a layer stack can be calculated using the transfer matrix method (TMM).
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For this project the TMM calculations have been performed in a Python environment
using the readily available TMM library made by Steven Byrnes [53]. The reader is
referred to the documentation for a detailed description of the theory behind the
TMM. The theoretical transmission curve of a coating equal to Design 1 in Table 3.1 is
shown in Figure 3.1 (A) as the blue graph.
An alternative design was proposed which is named Design 2 in Table 3.1. The
theoretical transmission curve belonging to this design is shown in Figure 3.1 (A)
as an orange line. The figure shows that the transmission of the design is generally
lower than for Design 1 which also means that the reflectivity is higher. As mentioned
earlier, increased reflectivity also means increased finesse of the FPI. Therefore, this
design would be ideal for detecting the fingerprint spectral features of materials in
the LWIR due to the increased spectral resolution. The average transmission of a
single mirror based on Design 2 within the sensor sensitivity range is 8.5 %.
As a last alternative, a mirror coating consisting of only two layers could be considered.
This design is named Design 3 in Table 3.1, and the simulation based on the TMM
calculation is shown in Figure 3.1 (A) as a solid green line. The average transmission
within the sensor sensitivity range is 19.1 %, and therefore this design would have
the broadest average transmission peak. It is important to notice the option for
this two-layer, design since having a recipe with only two layers could mean that
completely flat mirrors are obtained. The flatness of the mirrors would compensate
for the broadened transmission peak, and therefore the mirror system constitutes a
standard cost-benefit system.

3.1.2 FTIR Measurements of Homemade Mirrors

A prestudy was carried out prior to this project, where two FPI mirrors were produced
based on Design 1 in Table 3.1. These mirrors were characterised using a combination
of FTIR and FTIRR measurements as presented in chapter 2. Figure 3.2 shows the
FTIR transmission and reflection profiles. Figure 3.2 (A) shows both measurements for
the first mirror with an acceptable transmission profile which is mostly flat, between
8 and 14 µm, and has a mean value of 23.8 %. The transmission of the second mirror,
shown in Figure 3.2, matched the first within a few percent with a mean value of
24.5 %. Even though these values are notably higher than the theoretical transmission
calculated using TMM, both mirrors were accepted as first versions. The most critical
drawback of these homegrown mirrors are the absorption, which is found from the
law of energy conservation as stated in equation 2.9.
Figures 3.2 (A) and (B) both show that from 6 to 10 µm the percentage of total light
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Figure 3.2: (A) and (B) Transmission and reflection measurements of the first home-
grown (A) FPI mirror and second homegrown (B) FPI mirror, respectively. The
absorption has been calculated as Absorption = 100 %� (T% + R%). The two vertical
lines in each figure represent the sensor sensitivity range.

is close to 100 %. In both figures the percentage of total light means the sum of
transmitted and reflected light. Above 10 µm a huge dip is seen in the total percentage
of light which is ascribed purely to absorption, since it is assumed that the scattered
light is negligible. The average percentage of reflected light between 8 and 14 µm is
65.7 % and 68.7 %, which gives in mean absorption values of 10.5 % and 6.8 % and
maximum absorption values of 30.4 % and 21.96 % for the first and second mirror,
respectively.
While the mirrors seem to have good transmission profiles for a hyperspectral thermal
imaging application, the mirrors suffer from a large amount of absorption, which
impacts the data acquisition negatively due to low transmission intensity through
the FPI. This was measured as well, by placing the two mirrors parallel to each
other at close distance. This configuration constitutes an FPI and the transmission
through both mirrors was measured by FTIR. The results from these measurements
are graphically plotted in Figure A.4 (A). The effective bandpass of the FPI based on
homegrown mirrors was measured to a maximum of 55 % with a FWHM transmission
peak of 440 nm at wavelengths below 11 µm. At 11 µm the transmission was below
40 %, which is much below the success criteria. Still, the mirrors were used in the first
version of the hyperspectral thermal camera (HSTC) to demonstrate the principle of
the HSTC, and the results are presented in Chapter 6.
A series of experiments were conducted in order to improve the mirrors by lowering
the absorption, and the results and considerations are presented in the following
sections.
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3.2 Experimental Methods

After having concluded that the first generation homegrown mirrors were not ideal
for our hyperspectral thermal imaging application, an attempt was made to improve
the coating. Consequently, the primary purpose of the mirror experiments was to
reduce absorption, reach a high reproducibility, and lastly to mass produce mirrors
if the first two aims proved successful. The depositions were carried out using a
Cryofox 600 manufactured by the Danish company Polyteknik A/S. The deposition
chamber is capable of performing RF and DC sputtering and contains a carousel
fitting four crucible liners for e-beam deposition. All of these deposition techniques
are described in Chapter 2. The sputtering target used during the depositions was a
2" and 3 mm thick germanium target of 99.999 % purity. All depositions were carried
out using argon as the main sputtering gas (99.998 % purity). The sputtering distance
was 18.5 cm, and therefore is a significant geometric deposition factor which needs to
be accounted for, to ensure a homogeneous deposition with the right thickness.[54].
The chamber is equipped with a Huber Unichiller water cooling system capable
of keeping the sample holder at temperatures within �20-90 °C. Additionally, the
system rotates the sample holder during deposition around the central axis of the
substrate.
The scanning electron microscope used for analysis was a Hitachi S-4800 and the SEM
chamber is fitted with a Bruker Quantax 200 EDX system. Both of these techniques
are described in Chapter 2 as well.

3.2.1 Experimental Depositions of BaF2

A test deposition was carried out in order to replicate the FPI mirror used in the early
version of the HSTC. Thus, a Ø2" and 5 mm thick ZnSe window was used as primary
mirror substrate and a smaller Ø20 mm and 1 mm thick window was placed in the
vicinity of the primary substrate for post-deposition tests. The smaller substrates were
used in order to examine the coating through a cross sectional analysis in the SEM.
The measurements were performed by cracking the substrates through the middle
and imaging the coating from the side. Note here that the geometric dependency
of this specific deposition chamber has been studied previously by Hausladen and
Kjelstrup-Hansen[54], and the geometric dependency of any system in general have
been described by Thornton[55]. When taking the geometric dependency into account
it is clear that the different position of the test ZnSe substrate change the film thickness
relative to the mirror substrate, and, therefore, a cross-sectional image analysis of
these do not perfectly reflect the film thicknesses of the mirror substrate itself. The
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Figure 3.3: (A) SEM image of the test deposition of a full FPI mirror recipe. The
columnar growth in the BaF2 layer have a negative impact on the flatness and
homogeneity of the third, germanium, layer. (B) SEM image of a ZnSe Ge/BaF2/Ge
mirror coating using a argon inlet flow of 15 SCCM during germanium sputtering.

test substrate can, however, be used to examine the overall structure of the film and
give an overview of the film thickness which was the main objective of the substrates
testing during these experiments.

An attempt was made to produce a full mirror recipe which matched Design 1 in Table
3.1. The germanium layers were sputtered with an argon gas flow of 45 Standard
cubic centimetres per minute (SCCM) resulting in pressures in the 4.7⇥ 10�5 mbar
range, and the BaF2 layer was deposited at a pressure in the 2⇥ 10�5 mbar range.
The base pressure of the system was in the 3⇥ 10�7 mbar range. The deposition was
successful, and the coating was examined by a cross sectional analysis in the SEM.
An image of the coating is shown in Figure 3.3 (A). After investigating this image,
a few hypotheses was made relating to the growth of the BaF2 film. The triangular
pattern visible in the BaF2 layer indicates that the film grows in a crystalline and
column-like structure. A generalised model for the growth and structure of thin
films has been described in the literature, known as the Thornton zone model[56].
According to this model, the crystalline and columnar growth of the BaF2 film is
caused by the film growing in the first growth zone where the substrate temperature
is much lower than the melting temperature. The columnar growth is described as
a result of the low diffusion and mobility of the impinging atoms. This theory is
backed by the high melting point of BaF2 of 1368 °C and that BaF2 sublimates upon
deposition. A few growth models have been formulated and reported in the literature
many of which cite the pioneer work within thin film zone models conducted by the
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Russians Movchan and Demichishin in 1962. Since their work is written in Russian
(and therefore not understood by the author), the work by Thornton will be cited in
the following sections. Films growing in the first growth zone have a rough surface
structure, and since the growth in the first BaF2 layer and second overall is comparably
more column-like than the germanium seen in the first layer, the third germanium
layer also has high surface roughness, which is also clearly seen in Figure 3.3 (A).

Recipe [substrate | coating] Ar flow [SCCM] Sample holder T 2nd layer conclusion Figure
ZnSe | 1

2 l Ge/ 1
4 lBaF2/ 1

4 lGe 45 �20 °C columnar/crystalline -
ZnSe | 1

2 l Ge/ 1
4 lBaF2/ 1

4 lGe 45 20 °C columnar/crystalline 3.3 (A)
ZnSe | 1

2 l Ge/ 1
4 lBaF2/ 1

4 lGe 45 90 °C columnar/crystalline -
ZnSe | 1

2 l Ge/ 1
4 lBaF2/ 1

4 lGe 15 20 °C columnar/crystalline 3.3 (B) and 3.4 (A)

Table 3.2: Overview of the deposition parameters tested using BaF2 as the low
refractive index layer.

Two additional test depositions were made using the same mirror recipe but covering
the temperature span of the water cooling system which is connected to the sample
holder. This means that a ZnSe/Ge/BaF2/Ge coating was deposited on two mirror
substrates held at �20 °C and 90 °C, respectively. While the �20 °C substrate temper-
ature was not expected to provide a positive result on the columnar growth, the 90 °C
did not solve the problem either. Several sources state that the film growth is im-
proved with rising temperatures, and therefore, a too low substrate temperature is the
most likely reason why the second layer did not show any improvement [57, 58, 36].
Because it was not possible to increase the substrate temperature further the attempts
on improving the BaF2 layer was terminated, and focus was shifted to improving the
third layer of germanium. This was done by growing the germanium film with a
reduced argon gas flow during the film growth process. By reducing the argon gas
flow into the chamber during deposition, the mean free path is increased of both the
germanium clusters released from the substrate and the bombarding Ar ions. The
overall effect is an increased kinetic energy of the germanium clusters released from
the substrate. A deposition was carried out with the argon gas flow rate reduced from
45 SCCM to 15 SCCM. BaF2 was used again as the low refractive index layer and the
resulting coating is shown in Figure 3.3 (B). The SEM image shows a less corrugated
transition between the second BaF2 layer and the third Ge layer. It is noticeable that
the third germanium layer is not homogeneous and contain horizontal lines which
may indicate that the germanium has been mixed/fused into the top layer of the BaF2
coating due to the increased energy during deposition. It should further be noted
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Figure 3.4: (A) SEM image of a ZnSe Ge/BaF2/Ge mirror coating using a lowered
argon inlet flow of 15 SCCM during germanium sputtering. The image shows a
faulty BaF2 and thereby underline the importance of finding a suitable candidate to
substitute BaF2. (B) SEM image of a test deposition of a full mirror recipe where the
low refractive index layer was a 9:1 mix of BaF2 and CaF2.

that the columnar structure of the BaF2 layer is still observed. The columnar structure
was continually a problem and an attempt to reproduce this coating showed failing
BaF2 layers as shown in Figure 3.4 (A).

FTIR measurements were made of the film shown in Figure 3.3 (B) in both transmission
and reflection configurations. The results of these measurements are shown in Figure
3.5 (A). Note that prominent absorption appears at transmitted wavelengths above
10 µm. In order to locate the source of the absorption peak, two different reference
depositions were made along with a measurement of a clean mirror substrate. The
measurement of the clean ZnSe substrate is shown in Figure 3.5 (B), where it is seen
that the absorption is low at wavelengths below 15 µm. The fall in transmission and
increase in absorption at wavelengths above 15 µm can be ascribed to the inherent
material properties of the ZnSe substrate. A BaF2 layer was deposited onto a fresh
substrate, and the transmission and reflection spectra were measured. The spectra
are plotted in Figure 3.5 (C) along with the sum of the two measurements. The
graph shows a very limited absorption in the BaF2 layer compared to the graph
seen in (A) which illustrates the full mirror stack. A single germanium layer was
deposited onto a ZnSe substrate, and the transmission and reflection spectra were
measured, as seen in Figure 3.5 (D). Here, the absorption dip in the germanium layer
is clearly seen which could be due to oxygen contamination and the formation of
GeOx [59]. Oxygen contamination could arise from either the deposition chamber
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or the introduction of the sample to the ambient atmosphere [60, 61]. This problem
could possibly be circumvented by adding a protective coating of BaF2 on top of the
mirror substrate, but was not attempted at the time of deposition. Such a procedure
is a possible pathway to preventing oxidization of aluminum mirror coatings using
MgF2 as the protecting material [62, 63]. Additionally, previous studies have shown
that dielectric reflective coatings consisting of alternating ThF4/ZnS or ThF4/ZnSe
both show an increased hardness and resistance to water vapour when protected by a
CeF3 overcoating [57].

Recipe [substrate | coating] Ar flow [SCCM] Plasma cleaning Sample holder T Absorption
ZnSe | 1

2 l Ge/ 1
4 lBaF2/ 1

4 lGe 15 yes 20 °C yes
ZnSe | 1

2 l Ge/ 1
4 lBaF2/ 1

4 lGe 45 yes 20 °C yes
ZnSe | 1

2 l Ge 15 yes 20 °C yes
ZnSe | 1

2 l Ge 45 yes 20 °C yes
ZnSe | 1

2 l Ge 45 no 20 °C yes
ZnSe | 1

2 l Ge 45 yes 90 °C yes

ZnSe | 1
2 l Ge 45 yes 90 °C

+ annealing to 300 °C yes

Table 3.3: Overview of the deposition parameters checked for germanium absorption.

3.2.2 Experimental Depositions of CeF3

A series of experiments were made in order to improve the low refractive index
layer of the three-layer mirror coating. Having tested the extremes of the deposition
parameters available for the Cryofox 600, the following tests revolved around the
deposition of alternative materials in order to improve the second layer. As mentioned
in the introduction to this Chapter, a wide variety of materials may be used, where
some may be better than others. Su et al.[64] showed that CeF3 films can be grown
with decent structural parameters to an optical thickness of 3.6 µm. In this study, the
CeF3 films were deposited at substrate temperatures in the range 100-250 °C, which
again is outside the range of the PVD chamber used in these experiments. Therefore,
two depositions were made with substrate temperatures held at 90 °C and deposition
rates of 5 and 100 Å s�1. The 100 Å s�1 deposition rate was used in order to check
whether a faster rate could compensate for the lower substrate temperature. None
of these depositions resulted in stable films, and the CeF3 seemed to crystallise in
microscopic crystals which could be scraped off the surface using a tissue. An image
of the film using optical microscopy is included in the Appendix in Figure A.3. This
figure shows the interference and diffraction of light from macroscopic crystals on
the surface. Earlier studies have shown that CeF3 grows in a crystalline structure
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Figure 3.5: (A) Transmission and reflection FTIR measurements of the ZnSe
| Ge/BaF2/Ge stack shown in Figure 3.4 (A). (B) Transmission and reflection FTIR
measurements of a clean ZnSe substrate with a pre-coated broad band antireflective
coating. (C) Transmission and reflection FTIR measurements of a ZnSe | BaF2 coating.
The measurements show that the barium fluoride is not responsible for the high
absorption in the mirror coating. (D) Transmission and reflection measurements
of a ZnSe | Ge coating. The measurements show that the barium fluoride is not
responsible for the high absorption in the mirror coating. The absorption has been
calculated as Absorption = 100 %� (T% + R%). The two vertical lines in each figure
represent the sensor sensitivity range.
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with a packing density of 0.8 [58]. Other studies, however, note that the intrinsic
tensile stress in a 100 nm film of CeF3 increases by 53 % as the substrate temperature
is lowered from 230 °C to 20 °C [65, 48].

Recipe [substrate | coating] Sample holder T [°C] Deposition rate 2nd layer conclusion
ZnSe | 50 nm Ge/ 1

2 l CeF3 90 °C 5 Å/s Macroscopic crystalline
ZnSe | 50 nm Ge/ 1

2 l CeF3 90 °C 100 Å/s Macroscopic crystalline

Table 3.4: Summary of the deposition including CeF3 as the low refractive index layer.

3.2.3 Experimental Depositions of a CaF2/BaF2 Mixture

After concluding that pure cerium fluoride resulted in worse films than BaF2, a
deposition series was performed with a mixture of BaF2 and CaF2 in a weight ratio of
9:1. Each matter, consisting of 3-6 mm pieces, was weighted in the correct ratio and
was subsequently added to the e-beam crucible for mixing. Since both the materials
sublimate upon deposition, the material mixing is non-ideal and could therefore
be a major source of error. Previous studies, however, indicate that mixing these
materials provide fluoride films of higher density [66]. An attempt was made to do
a full mirror recipe, and an SEM image of the resulting coating is shown in Figure
3.4 (B). The substrate temperature was kept at 90 °C, and the germanium layers were
deposited at a pressure of 4.7⇥ 10�3 mbar, and the BaF2/CaF2 layer was deposited
at a pressure of 9.5⇥ 10�5 mbar. The columnar and crystalline growth can be seen in
the low refractive index layer, which strongly affects the third germanium layer.

Recipe [substrate | coating] Sample holder T [°C] Deposition rate 2nd layer conclusion
ZnSe | 1

2 l Ge/ 1
4 lCaF2/BaF2/ 1

4 lGe 90 °C 5 Å/s Macroscopic crystalline

Table 3.5: Summary of the depositions including CaF2/BaF2 as the low refractive
index layer.

3.2.4 Experimental Depositions of IRX, a CeF3/BaF2 Mixture

A final material was used in order to grow a durable film which was the commercial
material CIROM-IRX (IRX). IRX was acquired from the American company Materion,
and according to the material safety data sheet[67] it consist of a mixture of CeF3
and BaF2 at a weight percentage ratio of about 9:1. The exact ratio is a trade secret.
IRX is sold as a non-radioactive replacement of ThF4, which is widely used in high
intensity CO2 laser coatings due to low absorption [50]. The effect of mixing CeF3
and BaF2 have been studied and reported by Pellicori[48], who conclude that it
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is possible to grow quarter wave films of a design wavelength of 10 µm. Pellicori
and Colton[68] claim that IRX can be grown to thicknesses of 1800 nm which is
higher than the thickness needed for our recipe. Materion recommends a substrate
temperature between 225-250 °C and state that the substrate temperature should not
be less than 150 °C [69]. The initial deposition of IRX was carried out with high hopes
Even though these temperatures could not be reached in the facilities at hand. The
recipe used was a thin 50 nm germanium layer followed by 1

4 lIRX. The substrate
temperature was kept at 90 °C and the main pressure during germanium deposition
was 4.78⇥ 10�3 mbar. The main pressure during IRX deposition was 7.6⇥ 10�5 mbar.
An image was grabbed using the optical microscope, since most of the coating peeled
off the surface. Part of the coating remained intact at the edge of the substrate, which
may be due to shadowing effects from the sample holder which give rise to thinner
coating layers. An image of the edge of the coating is shown in Figure 3.6 (A), where
it is seen that the coating peels off to a lesser extent. It is furthermore noticed that the
germanium is peeled off the ZnSe substrate by the IRX layer which can be concluded
since germanium is opaque to visible light. In Figure 3.6 (A) the germanium only
remains in the center of the IRX grain boundaries. The deposition rate was increased
to 20 Å s�1 since increasing the deposition rate has improved adhesion in previous
studies [70]. This coating was unsuccessful and it was therefore decided to increase
the thickness of the germanium layer and decrease the thickness of the IRX layer. Two
depositions followed where 300 nm Ge / 875 nm IRX was deposited as summarised
in Table 3.6. Both structures were stable coming out of the PVD chamber, however,
during imaging in the SEM the coating curled off the substrate as is shown in Figure
A.1 (A) in the Appendix. The curling of the coating may be reasoned by a charge
buildup from the electron beam in the SEM. An out of focus image was acquired of
the structure as shown in Figure A.1 (B), and this showed a very flat second layer of
IRX, which motivated further experiments. An IRX deposition of a full mirror recipe
was deposited, and the substrate temperature was maintained at 90 °C. The main
pressure during IRX deposition was 9.57⇥ 10�5 mbar. The main pressure during
germanium deposition was 4.68⇥ 10�3 mbar. The resulting coating peeled off the
ZnSe substrate and SEM images could only be acquired of fractions of the coating.
One of these images is shown in Figure 3.6 where it is also noticed that the coating
bend upwards which indicate tensile stress in the structure. During analysis it was
further noticed that in some region the initial germanium layer stuck to the ZnSe
substrate, while the IRX layer with the quarter wave germanium layer on top was
peeling off.
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Figure 3.6: (A) Optical microscopy image using a 5x objective lens. Tensile stress
is seen in the IRX layer. (B) SEM image of a piece of a Ge/IRX/Ge coating. This
image shows that the IRX coating bends upwards, which indicates tensile stress in
the coating. It is, furthermore, observed that the initial germanium layer is released
from the surface, which indicates that the ZnSe/Ge adhesion is the main weakness of
the coating.

Recipe [substrate | coating] Ar flow [SCCM] Sample holder T IRX deposition rate
ZnSe | 50 nm Ge/ 1

4 lIRX 45 90 °C 5 Å/s
ZnSe | 50 nm Ge/ 1

4 lIRX 45 90 °C 20 Å/S
ZnSe | 300 nm Ge/ 875 nm IRX 45 90 °C 5 Å/s
ZnSe | 300 nm Ge/ 875 nm IRX 45 90 °C 20 Å/S
ZnSe | 1

2 l Ge/ 1
4 lIRX/ 1

4 lGe 45 90 °C 20 Å/S

Table 3.6: Overview of the deposition parameters used during IRX depositions.

Following the initial depositions of IRX, it was realised that the adhesion of germa-
nium to the ZnSe substrate significantly affect the quality of the coatings. It was
further concluded that the adhesion between the germanium layers and the IRX could
be improved, and therefore during the following depositions a thin binder layer of
Y2O3 was added to the recipe. Previous studies have conducted adhesions tests of
ZnS films on germanium substrates and conclude that the adhesion is increased
dramatically using a substrate temperature of 150 °C following a post deposition
annealing to 225-250 °C [70]. Therefore, four ZnSe substrates were coated with a 400
nm germanium layer of which two were annealed post deposition in an oven to 170 °C.
These four samples were split in two sets containing one germanium sample with
and without a post deposition annealing treatment. Hereafter, a 500 nm IRX layer and
a 1000 nm IRX layer was deposited to the first and second sample set, respectively. A
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summary of the depositions is shown in Table 3.7. Only sample #4 in Table 3.7 sur-
vived being introduced to the SEM chamber. This sample received a post deposition
annealing to 170 °C and it was therefore concluded that the method worked to some
extent. The IRX layer deposited onto sample #4 peeled of during imaging, and it was
therefore concluded to be an effective improvement of the substrate adhesion.

Sample # Ge [nm] Ar SCCM post anneal Y2O3 [nm] IRX [nm] Film after deposition SEM
1 400 nm 45 no 2 1000 cracked Ge - IRX liftoff -
2 400 nm 45 170 2 1000 cracked Ge - IRX liftoff -
3 400 nm 45 no 2 500 intact cracked
4 400 nm 45 170 2 500 intact cracked

Table 3.7: Experimental details and recipes used to investigate germanium films
deposited onto ZnSe substrates using DC sputtering. IRX was subsequently deposited
onto the initial germanium layer in order to test the IRX adhesion.

As mentioned earlier in section 3.2.1, the density and crystallinity of the germanium
layer increases as the argon pressure during deposition is lowered. It was also
mentioned that the energy of the sputtered clusters was increased with a lower argon
pressure. Therefore, it was attempted to grow the initial germanium layer using an
argon inlet flow of 10 SCCM in order to improve the adhesion to the substrate. Four
samples were introduced to the PVD chamber and a complete 1

2 l germanium layer
was deposited on all substrates. Following this deposition one sample was annealed
by placing the sample on a hotplate heated to 250 °C. The remaining three samples
were annealed to 170 °C in an oven.
The importance of the thin binder layer of Y2O3 was investigated and therefore 1000
nm of IRX was deposited onto three samples where only one of the samples had
an adhesion binder layer included in the recipe. The last sample was saved for a
deposition of a full 1

2 l IRX layer. Table 3.8 summarises these depositions and as can
be seen, the effect of the Y2O3 adhesion layer is substantial.

Sample # Ge [nm] Ar SCCM post anneal Y2O3 [nm] IRX [nm] Film after deposition SEM
1 1350 nm 10 250C 0 1000 intact Ge - rough IRX -
2 1350 nm 10 170 0 1000 intact Ge - rough IRX -
3 1350 nm 10 170 2 1000 intact Large flakes
4 1350 nm 10 170 2 1750 intact Intact Ge - cracked

Table 3.8: Experimental details and recipes used to investigate germanium films
deposited onto ZnSe substrates using DC sputtering. IRX was subsequently deposited
onto the initial germanium layer in order to test the IRX adhesion.

Optical microscopy images of the initial three samples are shown in Figure 3.7. Image
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Figure 3.7: (A) Optical microscopy image of the coating following IRX deposition
on sample 1 in Table 3.8. (B) Optical microscopy image of the coating following IRX
deposition on sample 2 in Table 3.8. (C) Optical microscopy image of the coating
following IRX deposition on sample 4 in Table 3.8.

(A) in Figure 3.7 shows an optical microscopy image following the IRX test deposition
number 1 in Table 3.8. This image shows a semi-cracked film, however, it is not
possible to locate the main source of error based on this image. Figure 3.7 (B) shows
an optical microscopy image of deposition number 2 in Table 3.8 and comparing this
to Figure 3.7 it was concluded that the annealing to 170 °C provided the best results.
IRX was deposited onto the remaining two samples and this time an adhesion layer
was included in the recipe. An IRX layer of thickness 1000 nm and 1750 nm was
deposited onto sample number 3 and sample number 4 in Table 3.8, respectively. Both
depositions were successful and an optical microscopy image of sample number 4
is shown in Figure 3.7 (C). This image shows a coating which stuck to the surface,
however, a pattern of small cracks is seen covering the sample.

Sample number 3 in Table 3.8 was broken in two and a cross sectional image was
acquired in the SEM. Two images have been included here and are shown in Figures
3.8 (A) and (B). Both images show that the thin film coating releases from the surface
as the sample is introduced to the SEM. However, the quality of the IRX film is
remarkably better than the previously grown BaF2 films shown in section 3.2.1. Figure
3.8 shows a non-corrugated second layer of IRX which looks homogeneous and less
crystalline than BaF2.
The remaining sample number 4 in Table 3.7 was introduced to the PVD system once
again, and a third layer consisting of germanium was deposited onto the IRX layer,
even though cracks appeared on the surface. SEM images following this deposition
is included in the Appendix Figure A.2. Since the cracks dominated the surface, the
resulting three-layer mirror coating was not uniform, and FTIR measurements was
not performed.
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3.3. Characterisation of Giai Photonics Mirrors

Figure 3.8: (A) SEM image of a ZnSe Ge/IRX. (B) SEM image of the Ge/IRX coating
showing the smooth thin film layers, and the weak bonding between all three layers.

3.3 Characterisation of Giai Photonics Mirrors

During the development of our home grown FPI mirrors we attempted to outsource
the production of the mirrors. This involved the Chinese company Giai Photonics
which made early promises of mirrors that satisfied the specifications needed in the
first order scanning Fabry-Pérot interferometer. Following several failed attempts
to produce a mirror coating which satisfied the requirements we received a set of
mirrors that showed promising transmission profiles.
The transmission profile is shown in Figure 3.10 below, where the transmission and
reflection profiles are measured using a Shimadzu IRAFFINITY-1S FTIR spectrometer.
As can be seen in Figure 3.10, the transmission percentage within the sensor sensitivity
range of 8-14 µm has a mean value of 16.3 %. The average reflectivity of the mirror in
the range 8-14 µm is 81.3 %. Subtracting both the average transmission and average
reflectivity from 100 % results in an average absorption of 2.4 % assuming that no
light is scattered. As is seen in Figure 3.10 (A) the absorption gradually rises with
the increased wavelength and has a value of 15 % at 14 µm. The absorption values
are lower than those observed for the homegrown mirrors. The absorption of 15 % at
14 µm is still too high, and too much light is lost at these wavelengths. Since the mirror
recipe was unknown when we received the substrates, a cross sectional analysis of
the mirrors using a Hitachi S-4800 SEM was performed. The mirror substrate was
broken in half and the coating was imaged from the side. The image acquired is
shown in Figure 3.9 (A), which reveals that a multilayered structure is deposited
counting nine layers excluding the thin top coating. The total coating thickness was
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Figure 3.9: (A) shows an SEM image of the FPI mirrors from Giai Photonics. (B)
shows an EDX analysis of the FPI mirrors from Giai Photonics. The overlays of colour
red, green and blue indicate the presence of Germanium, Sulphur and Selenium,
respectively.

measured to 10.5 µm using the analysis software provided by the instrument. An
EDX analysis was performed in order to determine the coating materials used. A
graphical summary of the results is shown in Figure 3.9 (B). Here the emission energy
of the x-rays produced in every region of the image is compared to database values
during the image scanning. Here it is seen that four germanium layers are present in
the coating, and that the five additional layers supposedly consist of ZnS. During the
scan we also checked for fluoride compounds and the fluoride compound check was
negative.
The most important reason why the Chinese mirrors cannot be used in our hy-
perspectral imaging application is that the mirror substrates bend significantly. A
generalisation of this problem was introduced in Section 3.1.1 and shown in Figure
3.1 (B). The extent of the bending is shown in Figure 3.11 (B) where the interference
fringes arising from the cavity between the mirror top surface and the reference
substrate are clearly seen. Drawing a straight line across the center of the mirror
substrate, it is seen that four fringes cross the center line. The physical bending of the
substrate can be calculated by using the equation:
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Figure 3.10: (A) and (B) Transmission and reflection FTIR measurements of the Giai
Photonics (A) and II-VI Incorporated (B) FPI mirrors, respectively. The absorption has
been calculated as Absorption = 100 %� (T% + R%). The two vertical lines in each
figure represent the sensor sensitivity range.

ml = 2nd cos(q)

m

d =
ml

2n cos(q)

Using n = 1 and q = 0 we see that the difference in thickness between fringes are
half integer values of l. Counting ⇡ 4 fringes and using a mean value of 500 nm for
visible light the resulting mirror bending is 1 µm. This is way too much for the FPI
since placing two bending mirrors on top of each other result in MS differences of
2 µm.

3.4 Characterisation of II-VI Incorporated Mirrors

Following several failed attempts to buy and develop mirrors for the Fabry-Pérot,
we contacted the company II-VI Incorporated. II-VI accepted making our mirror
coating suggesting a low refractive index layer consisting of either ytterbium fluoride
or thorium fluoride. Owing to the thickness of our middle layer, II-VI chose to deposit
thorium fluoride, since the thicknesses needed for a 10.5 µm design is close to the
maximum thickness possible for ytterbium fluoride.
Our mirrors still consist of two-inch substrates of a thickness of 5 mm. The flatness
of the substrates is crucial for the performance of the mirrors, and thus the flatness
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Figure 3.11: (A) Image of the II-VI mirror stack with a l/50 substrate on top. The
bending of the interference fringes reveals that the mirror is not ideally flat. (B) RGB
image of the interference pattern when placing a l

50 substrate on top of the Giai
photonics FPI mirrors.

specification is set to a quarter fringe peak to valley (PV) at a He-Ne wavelength of
632.8 nm. The homogeneity of the surface is also an important factor, which influences
the smoothness of the fringes observed. We, therefore, asked for the highest surface
finish available in the industry, which is specified as an S/D 20/10. This number
indicates the scratch and dig size in micrometers, which are common defects on the
mirror surface.
The edge thickness variation (ETV) is specified to be less than three arc minutes
corresponding to 3

60 °. Across a two inch substrate the maximum ETV in physical
distance is

ETV = sin
✓

3
60

2p

360
· 50.8 · 10�3m

◆
= 4.43 · 10�5m = 44.3 µm (3.3)

The mirror recipe deposited by II-VI is summarised in Table 3.9. All substrates were
additionally coated with a broadband antireflective coating consisting of ThF4 and
ZnSe on the backside. Both coatings had an aperture of 43 mm.
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II-VI Design
Material OPL Physical thickness

Ge 1/4 wave 0.656 µm
ZnS - 100 Å
ThF4 1/4 wave 1.836 µm
ZnS - 100 Å
Ge 1/2 wave 1.315 µm

ZnSe Inf 5 mm

Table 3.9: Overview of the deposition parameters for the II-VI Incorporated mirrors.

The transmission profile of the II-VI mirrors is shown in Figure 3.10 (B) along with
the reflection profile. The average transmission within the sensitivity range of the
bolometer sensor is 13.94 %, and the average reflectivity within this range is 84.34 %.
This results in an average absorption of 1.72 % with values of 3.43 % and 1.85 % at
the 14 µm and 8 µm ends respectively. A minimum in absorption of 1 % is measured
at the design wavelength of 10.5 µm. The values are close to perfect and lie within
the measurement errors of the FTIR instrument used in this setup. The effective
bandpass of an FPI assembly was measured using the II-VI mirrors and the results
have been graphically shown in Figure A.4 (B). The transmission percentage using the
II-VI mirrors was measured to be ⇠80 % at the design wavelength. At wavelengths
just above and below the design wavelength the transmission drops in percentage
to ⇠75 % due to the small absorption. The transmission percentages agrees with the
theoretically calculated values based on equation 2.8.
Figure 3.11 shows the substrates with a l/50 substrate placed on top which results in
interference fringes from the fluorescent lamps in the laboratory. The broken lines on
the figure are placed as tangents to the interference fringe (the red lines). The bending
of the substrates can be calculated accordingly and was determined to be ⇡ 250 nm.
This bending is acceptable but not ideal.
An FPI mirror recipe matching the II-VI mirrors has been used in a transfer matrix
method simulation. The thin adhesion layers of ZnS were omitted from the simula-
tion.Figure 3.12 (A) and (B) show the theoretical transmission profile of the FPI using
the II-VI mirrors. The transmission profile was found based on an unpolarised light
source, and the wavelength range was chosen according to the sensitivity range of the
microbolometer sensor. Several useful facts can be derived from Figure 3.12, which
eases the understanding of the hyperspectral thermal imaging datacubes gathered
when using an FPI as a wavelength filter. First of all, the FWHM of the first and
second order transmission peaks are directly comparable. In Figure 3.12 (A) it is
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Figure 3.12: (A) Simulations of the Fabry-Pérot interferometer with mirror separations
of 5, 7.5, 10 and 12.5 µm in the range from 8 to 14 µm. (B) The peak positions of
the transmitted band as a function of the mirror separation. The orders transmitted
are marked with their order. It should be noted that several orders lie within the
sensitivity gap of the sensor at mirror separations above 11.3 µm.

clearly seen that the FWHM is reduced in the second order transmission, which is
most noticeable for the two mirror configurations with mirror separations (MS) of
5 µm and 10 µm in Figure 3.12 (A). Additionally, note that the peak wavelength as
a function of the mirror separation has different slopes for each of the transmission
orders. Therefore, we can conclude that:

dlTrans
dMS n=1

6= dlTrans
dMS n=2

6= dlTrans
dMS n=3

(3.4)

The information above becomes relevant in Chapter 6.

3.5 Summary and Conclusion

While the experiments did not provide perfect FPI mirrors, they did provide a lot
of insight into the important factors for the process of developing optical thin film
coatings. Most notably, a sufficient substrate temperature is needed in order to pro-
duce high quality dielectric thin films. The three layer mirror recipe was successfully
reproduced. However, the strong absorption centered around LWIR wavelengths of
13 µm has a significant impact on the light transmitted by the FPI. This will be evident
in Chapter 6, which presents the data analysis of images grabbed using these mirrors.
Following the experiments it has been concluded that in order to obtain the highest
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grade coatings with good structural parameters and low absorption, several depo-
sition parameters must be tuned in order to reach the specifications desired. The
ability to heat the substrate is the most important parameter to ensure, provided that
future experiments should be carried out. This is mentioned widely in the literature,
and the post deposition annealing experiments of the initial germanium layer slightly
supports this fact.
Several additional experiments could be carried out in order to improve the mirror
substrates having the ability to heat the substrates during deposition. Especially, the
experiment involving alternative mirror designs presented in Figure 3.1 and Table 3.1
where the two-layer coating is the most interesting, since it may benefit the substrate
bending. Even though the two layer coating would broaden the transmission peak of
the FPI, the effect of a broadened peak is reduced by the flat substrate.
Future experiments could also include a protective coating on top of the top germa-
nium layer in order to prevent oxidation of the surface layer.
As a final note, an increased uniformity of the coating could be achieved by using a
planetary rotation system, the ability to monitor the coating thickness in situ using
optical transmission monitoring, and to perform ion assisted deposition.
Several optical coating companies were contacted during this project, where II-VI
Incorporated and GIAI photonics agreed to produce our FPI mirrors. GIAI photonics
chose to deposit a multilayered structure which ended up as a failure due to too high
tensile stresses causing the substrate to critically bend. II-VI Incorporated deposited
a three layer structure of Ge/ThF4/Ge with low absorption. The bending of the
substrate as a consequence of the coating was within tolerances and the II-VI mirrors
were therefore used for imaging during the final part of this project.
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4

Development and Functionality of a
Hyperspectral Thermal Imaging
Prototype

The following chapter will describe the technical details and physical assembly of
the hyperspectral thermal imaging system in detail. The chapter describes the actual
components used in our imager and the most important details about the working
principle of the camera.
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Figure 4.1: 3D design of the hyperspectral thermal lens connected to the QTechnology
camera body.

4.1 Physical assembly of the Hyperspectral Thermal Camera

During the course of this PhD project a functional and mobile prototype of the
hyperspectral thermal camera has been assembled. A 3D-render of the camera setup
is shown in Figure 4.1 (A). This prototype can be divided into three main components
consisting of the lens housing in front, the camera body in the middle, and the battery
package enclosure on top. A short description of the battery package is included
in Appendix A.2.2 and for information on the camera body the reader is referred
to he most critical functionality is located within the lens housing and a detailed
cut-through of this is shown in Figure 4.1 (B). Starting from the left the lens housing
consist of a protective window, the scanning FPI, the collecting optics, and lastly the
microbolometer sensor attached to the camera body. An individual description of
each component follows in the coming sections, although we do skip the description
of the protective window.

4.1.1 The Scanning FPI

A sideview of the scanning FPI is shown in Figure 4.2 (A). The FPI mirrors are
placed inside two circular steel flanges which fit inside the lens housing shown in
Figure 4.1. During assembly, three piezoelectric crystal stacks are placed as separators
between the steel flanges. The piezoelectric elements are placed at an equal angular
distribution of 120° around the edge of the flanges. During this project, two different
piezoelectric stacks have been used. The first stack is the Thorlabs PK2JA2P2 with a
maximum expansion of 8.0 µm provided that a bias of 75 V is applied along with a
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load of 144 N. This piezo stack was later upgraded to the Thorlabs PK2FMP2 piezo
stack with a maximum expansion of 11.2 µm at a bias of 75 V and a load of 400 N.
The load is provided by a nut, fastened to the back flange, which tightens onto disc
springs on the front flange. This is illustrated in Figure 4.2. The disc springs1 used for
the PK2FMP2 piezo has a maximum force of 673 N and a maximum travel of 0.22 mm.
Using four of these, a total travel of 0.88 mm is available to reach a force of 400 N. The
tightening of the M5 bolt needed for the recommended load can then be calculated by

400 N
673 N

· 0.88 mm = 0.52 mm

this equals:

0.523 mm
0.8 mm turn�1 = 0.65 turn

The FPI mirrors are typically inserted into the center of the flanges following assembly
and tightening of the nuts. The steel flanges are designed such that the ZnSe mirror
substrates have three contact points with the flange. Two of these contact points are
static and the last consist of a bendable plate which is tightened to the mirror by two
screws. This design is necessary in order to prevent physical bending of the mirror
substrate as a result of fixing the mirror in place. Following the placement of the
mirrors inside the steel flanges the mirrors must be aligned before imaging, which is
described in the following section.

Control and Scanning of the FPI

The FPI can be scanned following the assembly of the mirrors. This is carried out
by the Qtechnology print circuit board (PCB) QT5062, which is mounted on the
outside of the steel flanges. The main components of the QT5062 PCB for the control
and scanning of the FPI are three laser diodes and three photo diodes mounted at
positions around the uncoated mirror edge matching the piezoelectric stacks. The
photo diodes are single pixel CMOS detectors and the laser diodes have a wavelength
of 655 nm. The wavelength of the laser diodes is important since the transmission of
the ZnSe substrates starts at ⇠550 nm.
A voltage is swept in the range 0-75 V and back on all three piezoelectric stacks
during the acquisition of a hyperspectral thermal image (HSTI). As all three piezos
expand, the steel flanges are separated and the mirror separation is increased which
change the bandpass wavelength of the FPI. As the voltage is lowered from 75 V the

1https://www.fjedre.dk/01202700
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Figure 4.2: (A) Sketch of the FPI assembly which is used in this project. The yellow
ZnSe substrates are placed at ⇠ 3 µm separation and each is held in place by a steel
flange. The steel flanges are separated by three piezoelectric stacks which extend as a
voltage is applied by the QT5062 PCB. The expansion of the piezoelectric elements
separate the steel flanges, and thereby also separates the mirrors. Once the bias is
lowered the disc springs push the mirrors back to their original separation. (B) The
QT5062 PCB sets the voltages which is applied across each piezo element separately.
Three laser diodes and three photo diodes are mounted on the PCB. The laser diodes
illuminates 655 nm light into the uncoated cavity created by the bare ZnSe substrate,
and the photo diodes measure the interference caused by the cavity.

force from the disc springs brings the mirror separation back to its original value.
A HSTI is thus generated by continuously acquiring images during the forward
voltage sweep of 0-75 V. The images are acquired during the forward sweep since the
piezoelectric elements have a nonlinear behaviour in relation to the applied voltage.
During expansion the piezo crystals exert creep and thus maintaining the piezo at
a set expansion is not possible, since the piezo will continue moving in the same
direction. Another important characteristic is hysteresis which can be checked by
monitoring the interference fringe pattern which is measured from each photo diode
on the QT5062 when the FPI is scanned. The hysteresis was measured by scanning
the FPI linearly across the voltage range with steps of 0.1 V. Between each step a
waiting period of 3 ms was added and the three photo diodes were read out and
saved. In order to get a hysteresis curve the voltage is cycled from 0 V to 75 V and
back again. The resulting interference fringe pattern is shown in Figure 4.3 (A) for a
single photo diode. The blue graph shows the interference pattern for the forward
scan and the orange graph shows the interference pattern for the backwards scan
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Figure 4.3: (A) Interference fringes from the specular reflected 655 nm laser diode light
source. The black crosses mark the maxima and minima positions of the individual
fringes during the scan. The blue graph shows the interference measured during
forward scanning, and the orange graph shows the backwards scanning. The orange
graph has been offset for visualisation purposes. (B) The hysteresis curve associated
with the scan shown in (A). The hysteresis arise from the expansion and contraction
of the piezoelectric crystal.

which has been offset for visualisation purposes. Once again, we know that positive
interference happens at integer values of the wavelength and thus

ml = 2nd cos(q) (4.1)

using n = 1 and approximating q = 0 we find that the separation of the substrates
between two interference maxima changes by half the wavelength of the laser diode.
The same procedure is applicable for the interference minima substituting m by
(m + 1

2 ) and thus the relative expansion and contraction of the substrates can be
found by measuring the interference extremes. These are shown as black crosses
in Figure 4.3 (A) and the expansion and contraction of the substrate separation has
been calculated and shown in Figure 4.3 (B). The substrate separation is crucial
during image acquisition, since it has to be equal for all three piezoelectric elements
in order to keep the mirrors aligned and parallel while the HSTI is acquired. The
control software for the image acquisition checks the position of the interference
fringes shown in Figure 4.3 (B) and adjusts the voltage steps individually on the three
piezoelectric elements. The control happens through an open loop system that checks
the fringe positions following a full hysteresis cycle. As the FPI reaches 0 V the voltage
steps between fringes are recalculated for each piezo until a sufficient accuracy is
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reached. In the first part of this project the voltage was swept using steps of 0.1 V and
an image was grabbed every tenth step. Some of the range is lost during consecutive
full hysteresis sweeps and thus the datacube contained ⇠ 70 spectral bands. Later
the algorithm was improved and the voltage steps were reduced to 0.05 V resulting in
datacubes of approximately ⇠ 140 spectral bands and thus

Lx,y,l⇡70
smaller V-steps
========) Lx,y,l⇡140 (4.2)

The specific length of l will be stated in each individual section regarding image
analysis. The subject of the following section continues to focus on the alignment of
the mirrors because it is not only important during the image acquisition but also as
a part of the FPI assembly.

FPI mirror alignment

Until now we have briefly touched upon the importance of the bending of the
substrates which broadens the transmission peak of the FPI. A visualisation of this
effect is shown in Figures 4.4 (A) and (B) where 133 images have been acquired while
continuously scanning the piezo voltages from 0-75 V. The FPI have been placed in
front of the camera at the nearest focal plane. Additionally a 10 µm bandpass filter
with a FWHM of 356 nm was placed in front of the FPI. The band pass filter only
allows light at wavelengths centered around 10 µm to reach the FPI.
The mean spectrum of each coloured square box shown in Figure 4.4 (B) have
been calculated and plotted in Figure 4.4 (A). The graph shows that a maximum
transmission is let through the FPI at step 50. It is additionally observed that the peak
transmitted by the FPI at the edge of the mirror substrate and at the center of the
mirror substrate is let through the FPI at different band numbers. This is due to the
substrate bending mentioned in Chapter 3.
A similar analysis can be made where the mean spectrum along the edge of the FPI
mirrors is calculated. This is done to check that the mirrors are aligned, since the
10 µm peak would be transmitted at the same step number given that the mirrors are
aligned. An example of such situation is shown in Figures 4.4 (C) and (D) where (C)
shows the transmission of the squares along the edge of the mirror substrates shown
in (D).
During assembly, the FPI mirrors are placed on top of each other and the distance
between the mirrors is therefore difficult to control. This can result in a misaligned
FPI which is shown in Figures 4.4 (E) and (F). The graph shown in Figure 4.4 (E)
show that the transmission peak of the 10 µm light begins at step 60 and that the
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transmission peak is distributed across ⇠ 30 steps starting at the black and yellow
square in Figure 4.4 (F) and ending with the red squares. The first transmission of
the 10 µm light is moved to higher step counts compared to Figure 4.4 (C) since the
mirrors have a lower MS, and the skewering of the peaks is due to misalignment
which means that the MSs for the black and red square are different during the entire
sweep. Such an alignment was frequently the best obtainable during the first part of
this project, since the alignment of the FPI was checked by visual inspection of the
fringes in the edge of the ZnSe substrates. While the starting MS of 3 µm could be
controlled to some extent the method seldomly provided perfectly aligned mirrors.
The more precise alignment of the FPI for HSTI acquisition was found by ofsetting
each piezo element in the FPI flange by a certain voltage before initiating a HSTI scan.
While this has a positive effect on the alignment of the FPI mirrors during image
acquisition, the piezo offset has a negative effect on the scanning range of the FPI. The
offset parameters were found by keeping the voltage of one of the three piezoelectric
elements at 0 V while offsetting the two remaining channels by a certain amount.
These offset were iteratively scanned while the transmission through the FPI was
monitored. The perfect alignment was then chosen as the offset voltage combination
giving the highest intensity through the FPI. Later, an experimental setup meant for
FPI alignment was created, which is the main topic of Section 4.2. Before we reach
this section the description of the camera setup will continue along the direction of
the light, which following the interference within the FPI reaches the collecting optics.
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Figure 4.4: (A) Mean transmission of all pixels within the squares shown in (B) for
all spectral bands. The colour or each spectrum matches the corresponding square
in (B). (B) Image of the FPI placed in the far field optical path of the thermal camera.
The squares used for analysis have been placed from the edge of the FPI to the center
of the FPI. The colour of the squares correspond to the mean spectrum within the
square plotted in (A). (C) Mean transmission profile of the squares shown in with
colours matching the squares in (D). The graphs show a well aligned FPI since the
10 µm light is transmitted at the same band number for all squares along the edge of
the FPI. (D) Image of the FPI placed in the far field optical path of the thermal camera.
The squares used for analysis have been placed along the edge of the FPI mirrors.
(E) Mean transmission profile of the squares shown in (F) with matching colour. The
graphs show a misaligned FPI since the 10 µm light is transmitted across a range of
band numbers. (F) Image of the FPI placed in the far field optical path of the thermal
camera. The squares used for analysis are placed along the edge of the FPI mirrors.
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Lens Surface 1 Surface 2
Front aspherical High durability AR for LWIR 8-12 µm <0.5 % >96 % High Efficiancy AR for LWIR 8-12 µm <0.3 % >98 %
Back spherical High Efficiancy AR for LWIR 8-12 µm <0.3 % >98 % High Efficiancy AR for LWIR 8-12 µm <0.3 % >98 %

Table 4.1: Overview of the antireflective coatings applied to the germanium lenses in
the collecting optics of the camera system.

4.1.2 The Collecting Optics

The collecting optics consist of two lenses bought of the Israeli company Ophir Op-
tronics. The front lens of the collecting optics is a Ø43 mm germanium lens consisting
of one concave aspherical and one convex aspherical surface. The second lens is a
Ø56.8 mm germanium lens consisting of a one spherical concave and one spherical
convex surface.
A high durability broad band antireflective coating is deposited onto the outwards
facing surface of the front lens, since the collecting optics is designed by the manufac-
turer to be the only lenses in the imaging system. This coating protects the lens against
repetitive cleaning, dust, and general wear and tear. However, the transmission of
the antireflective coating is lowered as summarised in Table 4.1. The narrow band of
the antireflective coating of 8-12 µm is a considerate drawback of the imaging system,
and suppliers capable of producing antireflective coated optics in the 8-14 µm should
be found. All surfaces have S/D values rated to 80-50. The collecting optics make up
a system with an f-number of 1 and a focal length of 35 mm. The resulting angular
field of view is approximately 26.5 °C and the focusing range is ⇠ 30�• cm. Each
lens was bought individually and integrated into the camera lens system which is
shown in Figure 4.1. Both lenses are mounted in a steel cylinder which is capable of
sliding within the lens housing. The steel cylinder is fastened to a piezo inchworm
driven linear actuator bought from the company PiezoMotor. The focus of the lens is
then controlled through USB-serial commands sent by the QT5022 body. As the light
is focused it reaches the microbolometer sensor which capture the light in order to
produce a HSTI.

4.1.3 Spectral Bending

The nature of the collecting optics in combination with the FPI creates an artefacts
which is caused by the angle of incidence of the incoming light. Since the Fabry-Pérot
interferometer is placed in front of the Germanium lens system the light reaching the
sensor for imaging will travel at an angle within the FPI as well. This will effectively
change the optical path within the FPI of this light by a factor of sin(q), which results
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in an altered transmitted band wavelength depending on the angle of the incoming
light and thus the effect is named spectral bending. Since the field of view is constant
for our lens system, the angle of the light incident on each pixel in the FPA is constant.
This angle can be calculated through trigonometric from the physical size of the
sensor FPA. Since the light reaching every pixel is a sum of the contributions from
every possible angle from the lens system the angle of the light is found relative
to the center optical axis. In order to calculate this effect it is needed to shift the
coordinate system of the sensor pixels to the physical distance from the optical center,
and therefore the pixel coordinates are shifted to [px,py]. Reminding once again that
the resolution of the Pico 1024 Gen2 sensor is 1024x768 pixels it is true for px and py
that

px = {n | n is an integer, and n 2 [�512,�1] [ [1, 512]} (4.3)

py = {n | n is an integer, and n 2 [�384,�1] [ [1, 384]} (4.4)

Thus the center of the image plane is located at px = 0, py = 0, however, no pixel is
located at this coordinate. This requires a perfect assembly of the sensor relative to
the optical axis, however, it is true in theory. The spectral bending correction factor
lcorr[px, py] can be found from the relation

lcorr[px, py] = cos

0
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CCA (4.5)

where, flens = 1 and ppitch = 17 µm. This gives a spectral bending factor which
alter the wavelength in the image plane. The spectral bending factor is naturally a
continuous distribution, however it must be quantised when measuring due to the
individual pixels and their physical size. Still, the spectral bending factor lies within
the interval:

(lcorr[512, 384], lcorr[1, 1]) = {lcorr 2 R | 0.955  lcorr  1.0} (4.6)

The spectral bending effect has been tested experimentally by imaging a uniform
hotplate and investigating the transmitted band from three different bandpass filter
with center wavelengths of 8.2 µm, 10.04 µm and 11.3 µm. The uniform hotplate was
constructed by machining pyramid shaped structures on the surface with a height
twice as large as their width resulting in faces pointing at 63.4° relative to the surface.
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Figure 4.5: (a) Hyperspectral thermal image of an antireflective uniform hotplate with
a 11.322 µm bandpass filter in front of the camera lens where the band number 68 has
been shown. The spectral bending effect is seen as an intensity shift in the image plane.
(B) The mean spectrum of the squares in (A) is plotted for the 8.2 µm bandpass filter.
(C) The mean spectrum of the squares in (A) is plotted for the 10.04 µm bandpass
filter. (D) The mean spectrum of the squares in (A) is plotted for the 11.2 µm bandpass
filter.

Having these structures ensure that reflections in the image of the camera itself are
minimised. The entire lens was covered with a bandpass filter and the bending
of HSTI was investigated by investigating the mean transmitted spectrum through
the bandpass filter. Such measurement is shown in Figures 4.5 (A), (B), (C), and
(D). Figures (B), (C), and (D) shows the mean transmitted spectrum found in the
square regions marked in (A) for the 8.2 µm, 10.04 µm and 11.3 µm bandpass filter
respectively. Is is seen that the shift of the transmitted peak in HSTI data structure is
increased for the second and third order which is due to the different rate of change
for the transmitted band relative to the MS as explained in equation 3.4.
A potential circumvention of the spectral bending caused by the angular distribution
of the light is a mathematical correction of the wavelength of the transmitted light.
This results in a transformation of the hyperspectral datacube which can be found
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Figure 4.6: (a) A graphical illustration of a hyperspectral thermal datacube with a
spectral axis ranging between 8-14 µm and with an image plane size of 1024x768
pixels. (b) A graphical illustration of the same image cube as presented in (a) which
has been transformed by the image bending factor on the spectral axis. Each plane in
the transformed datacube represent an image grabbed by our hyperspectral thermal
imager. The spectral axis shows the corresponding wavelength, and it is thereby clear
that the images contain systematically different wavelengths.

straight forwardly by multiplying the spectral axis in each pixel of the image plane
by the wavelength correction factor. Such experiments have been carried out, without
success, and the spectral bending is therefore still a task to be solved. An example of
a transformed datacube is shown in Figure 4.6 below where (a) shows the standard
datacube and (b) shows the wavelength transformed datacube.

4.1.4 The Microbolometer Sensor

The specific sensor used in the thermal camera setup is the Pico1024 Gen2 produced
by the company Lynred. The sensor consists of a focal plane array (FPA) of 1024x768
individual pixels with a pixel pitch of 17 µm. The size of the datacubes is defined
by the pixel resolution of the Pico 1024 Gen2 microbolometer, and the length of the
spectral axis is defined by the number of images acquired during the voltage sweep
of the piezoelectric crystals in the FPI. The resulting three dimensional matrix is then
defined as
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Lx,y,l
Pico1024
=====) Lx=1024,y=768,l (4.7)

with L being an x⇥ y⇥ l matrix with x = 1024 and y = 768 using the Pico1024 Gen2
microbolometer sensor. These axes could be expanded having a sensor of higher pixel
resolution, however, throughout the rest of this thesis the x and y axes are kept at
constant values. It should be noted that image cropping is always a possibility, and
therefore the L matrix can always be reduced in size at the consequence of removing
information.
Each pixel in the sensor is a microbolometer in itself which, as mentioned in the
introduction, measures the incident thermal radiation by absorbing the thermal light.
As the pixel absorbs the light it heats up, and the resistivity is changed, which can be
measured as a change in current. An image grabbing event requires 33 ms, which
gives a framerate of 30 Hz with an integration time of the analog pixel output of 42
µs. All images in this thesis were handled and stored as 16-bit. The sensor spectral
sensitivity has been supplied by Lynred and is shown in Figure 4.7 (A). The Figure
shows that the sensor has a uniform sensitivity in the range 8-14 µm and that the
sensitivity rapidly drops at wavelengths above 14 µm.
The FPA is enclosed in a vacuum sealed compartment with a broadband antireflective
coated germanium window in front. The vacuum sealing protects the FPA and
enhances thermal insulation. The transmission profile of the germanium window in
front of the sensor has been supplied by Lynred as well and is shown in Figure 4.7
(B). Here it is observed that the transmission profile is relatively flat within the sensor
sensitivy region as well.
The responsivity to thermal radiation of the Pico1024 Gen2 is configurable through
three different sensor settings. The first sensor setting is the the signal gain which
has four discrete values of 1.00, 1.25, 2.30, and 4.10. The two remaining settings is
configured by applying a voltage on two different pins on the sensor itself. These
voltages are referred to as the GFID voltage and the GSK voltage. Both of these
voltages lie within the range 1.0-3.2 V. As the GFID voltage is increased the dynamic
temperature range of the sensor becomes shallower. This effectively increases the
microbolometer responsivity. The GSK voltage functions as an offset which changes
the range of emitted radiation needed for under and over saturating the output values.
A small experiment was designed for measuring the influence of the GFID voltage
primarily, which is elaborated in the following section.
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Figure 4.7: (A) Graph showing the sensor sensitivity as provided by the manufacturer.
The graph shows a uniform sensitivity between 8-14 µm. Above 14 µm the sensitivity
rapidly drops to 0. (B) Graph showing the transmission profile of the germanium
window on the sensor enclusore.

A Study of the Sensor Responsivity

An experiment was designed for mapping the influence of tuning the responsivity of
the Pico1024 bolometer. The bolometer responsivity can be increased by setting the
GFID voltage on the sensor chip itself. This effectively reduces the temperature range
of the bolometer chip and thereby increases the responsivity to small temperature
fluctuations. While this limits the temperature range visible by the sensor, the sensor
voltage GSK can be used to shift this range.
In order to find the width of the temperature range of the bolometer sensor an
experimental setup was made where the pixel output response to a temperature
perturbation was measured. The following explanation and results rely on a sensor
gain of 4.1x. A similar measurement series is presented in Appendix A.2.1 using a
sensor gain of 1.25x. A PID controlled print circuit board (PCB) hotplate was used for
measuring the pixel response at four different temperatures of 40, 50, 60 and 70 °C.
The PCB was covered in high emissivity polyimide tape and the GSK voltage was
chosen such that both the 40 °C and the 70 °C measurement were within the dynamic
range. A linear fit of the sensor response was used to find the temperature range,
by extrapolating the temperature value to the extremes of the measurement range of
the bolometer sensor. The sensor output was set to 16-bit and therefore the output
responses of 0 and 216 was used. The mean output intensity of all pixels that did
not either over or under saturate was used. Figure 4.8 (A) shows the mean intensity
development measured for the 40, 50, 60, and 70 °C hotplate measurements for 7
different GFID voltage settings. The slopes derived from the linear fit has been plotted
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Figure 4.8: Measurements of the influence of altering the GFID voltage on the thermal
camera using a 4x gain. (A) The mean intensity of the active area of a standard
thermal image of a hotplate at temperatures of 40, 50, 60, and 70 °C. (B) The slopes of
the linearly regressed lines in (A). (C) The corresponding temperature range provided
that 16-bit images are acquired. The temperature range can be moved freely by setting
the GSK voltage on the sensor.

versus the GFID voltage in Figure 4.8 (B). The seven different GFID voltages used
were 1200, 2000, 2800, 2900, 3000, 3100, and 3200 mV. The corresponding temperature
range that the sensor is capable of measuring can be calculated by dividing 216 by the
slope values in (B). The resulting temperature ranges and their related GFID voltage
has been shown in Figure 4.8 (C). Setting a maximised temperature responsivity is
crucial for our hyperspectral thermal imaging application since the spectral emissivity
differences are measured as radiant power changes which in this regard is comparable
to the temperature range. Thus, the higher GFID voltage should result in better
exploitation of the sensor 16-bit output range.

4.2 Mirror Alignment Station

During the first part of this PhD project, the mirror alignment was carried out by
placing the two FPI mirrors on top of each other, and checking the interference of
the visible light in the uncoated region of the FPI using visible inspection. While the
method works, it was tedious and often resulted in slightly misaligned mirrors. As
mentioned earlier in section assembly, it is desired to assemble the FPI mirrors as
parallel as possible from the beginning. This reduces the need for offset calibration
during image acquisition, which reduces the total range available for hyperspectral
imaging. Therefore, an effort was made to improve this procedure and reduce the
time needed for aligning the FPI mirrors.
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Figure 4.9: Graphical representation of the experimental setup built for fastening and
aligning the mirrors in the FPI. Three small Ibsen spectrometers functioning in the
range 600-1000 nm measure the interference pattern arising in the cavity of uncoated
region of the ZnSe mirror substrates. Three bifurcated fiber optics are used to direct
the light from a broadband light source into the cavity and back to be measured in
the spectrometer. Each spectrometer is connected through USB to a PC showing the
interference pattern in a Python application.

The resulting experimental setup is sketched in Figure 4.9. The figure shows an FPI
alignment station, where it was possible to mount and fix the mirror substrates. This
setup is made from three spectrometers of the model FREEDOM VISNIR FST-101
from the danish company Ibsen Photonics. The spectrometers measure light in the
range 600-1000 nm and their main purpose is to measure light interference between
the FPI mirror edge, where the substrates are uncoated. The spectrometers are bought
with a USB-SPI interface which functions by the use of a FTDI FT4222H chip.2 Demo
software was provided by IBSEN where communication with the spectrometers is
established through a C compatible Python script. This script is slightly modified but
otherwise included as is in Appendix A. A python application was made which use
the communication script provided by IBSEN to communicate physically with the
spectrometers. The collected spectra are read and plotted in a graphical user interface
based on the TKinter package. The custom application is shown in Appendix A Along
with an image of the GUI, and sketched in Figure B.1.

2The libft4222 driver is downloaded from the FTDI homepage at
https://www.ftdichip.com/Support/SoftwareExamples/libft4222-linux-1.4.4.44.tgz
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Following assembly the mirrors are fixed at specific minimum mirror separations
which may vary a lot from leg to leg. This distance can be measured exactly when the
uncoated mirror cavity is illuminated by a broadband light source which in our case is
a halogen lamp. Three bifurcated fiber optic waveguide cables (Thorlabs BFY105LS02)
were used to direct light from the halogen lamp to the mirror cavity and back to the
spectrometers for analysis.As seen before, the interference between the substrates is
given by the relation

2nd cos(q) = lm (4.8)

This time, the substrate separation d is kept constant while the range of lambda spans
several orders. As the interferogram is measured across the visible to the near infrared
range, the measured interferogram will be unique for the given mirror separation.
In Figure 4.9 the three spectrometers measure the absolute distance at each point
along the circumference of the mirrors where a piezoelectric element resides. Thus, by
comparing the three measured distances, a good estimate of the alignment is obtained.
A fine tuning of the mirror alignment can be carried out by fastening or loosening the
nuts applying force on the disc springs in the steel flange assembly. This is utilised,
along with the live measurements of the mirror separation at each "leg", to obtain well
aligned FPI mirrors prior to image acquisition. A variety of options for calculating the
absolute distance between the mirror substrates is included in the following section.

Absolute Position Calculation

Several methods can be applied to calculate the distance between the mirror cavities.
In the following section, two approaches will be shown. Theoretically, the mirror
separation can be determined based on the top position of two maxima or minima.
The relation for calculating the absolute distance can be deduced from the equation
introduced earlier and taking two extremes separated by one order into account. This
gives us the exact distance between the substrates based on the wavelength measured
for two extremes by

d =
1

2n cos(q)
lmlm+1

lm+1 � lm
. (4.9)

where d is the absolute distance between mirror substrates and lm+1, lm are the
wavelengths measured for two adjacent extremes. The derivation for this equation
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Figure 4.10: (A) Calibrated raw data from the FST-101 spectrometer. The interference
pattern arise from the mirror cavity at the point measured by the bifurcated Thorlabs
cable. The red crosses indicates minima positions which can be used to calculate the
absolute distance between the ZnSe substrates. (B) An FFT analysis of the frequency
transformed spectrum shown in (A). The frequency of the equidistant interference
fringes arise and the maximum position has been marked by a red cross and the
FWHM by two vertical red lines.

is shown in Equation (A.1). Several factors affect the quality of the result from such
a measurement. First, the resolution on the spectrometer is limited by the sensor
size and distance between the grating and the sensor. Using the FREEDOM VISNIR
FST-101 spectrometer a maximum resolution of 1.7 nm is obtained with a 2048 pixel
Hamamatsu S11639 linear CMOS detector. This results in uncertainty of a single
measurement, and therefore, in the alignment application the result is calculated for
all the measured interference minima. Figure 4.10 (A) shows a typical measurement
for a single spectrometer, where the minima are located and plotted as red crosses.
Inserting all possible values into equation A.1 and calculating the mean distance
results in a measurement of d = 12.19 µm with a standard deviation of ⇠307 nm. An
alternative way of calculating the absolute substrate distance is to calculate the Fourier
transform of the measured spectrum. For this analysis the fast Fourier transform is
used and calculated by

Xk =
N�1

Â
n=0

xne�i2pkn/N k = 0, 1, ..., N � 1

with N being the total number of sampling points, and xn being individual data
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points in the frequency domain. Since the data is gathered from the spectrometers
in the wavelength domain the data has to be transformed to the frequency domain
where the interference fringes are equidistant. In this domain the data points are not
equally spaced which is a necessity for calculating the FFT. Two transformations has
to be calculated for performing an FFT analysis of the data in order to extract the
dominating interference distance on the mirrors. First, the data is converted to the
frequency domain since the interference peaks will be equidistant in this domain. This
transformation is given by the simple equations regarding the energy, wavelength, and
frequency relation of light introduced in Chapter 1. Second, the data is interpolated
in order to create a dataset where the data points are equidistant and thereby creating
an artificial constant sampling rate. This is done by calculating the spline of the
frequency transformed data set and picking equally spaced data points. Now, the
FFT can be calculated and the resulting graph is shown in Figure 4.10 (B) where the
dominating inverse frequency of the interference measurement is observed to lie at
1/ f = 8.13⇥ 10�14 Hz�1. The related substrate distance can be calculated straight
forwardly by inserting into equation 4.8 using n = 1, and q = 0. Additionally we
calculate our common value of lm by transforming the inverse frequency found by
the FFT back to the wavelength-equivalent using the relations introduced in Chapter 1.

d =
lm
2
) lm =

c
f

The resulting value for the substrate thickness is 12.19 µm and the positions of the
FWHM lines lie at ±349 nm. While the accuracies of the measurements are very
comparable, the FFT analysis is more robust. One drawback of the FFT method is the
frequency resolution which is given by the relation

resolution =
Fs
N

where Fs is the sampling frequency and N is the number of sampling points. In
our case the sampling frequency is calculated by dividing the spectral range by the
number of sampling points given by pixels on the sensor. Hence, the only pathway to
increasing the resolution is by measuring the interference on a broader spectrum. The
resulting FFT resolution from the Ibsen spectrometers is 25 nm.
The spectrometer measurements from the IBSEN FST-101 spectrometers prove that
the concept of the spectrometers work as intended, and is a helpful setup in the

71



4.2. Mirror Alignment Station

alignment of the mirrors. It has been considered to test the setup for the control of
the FPI mirrors during image acquisition and the following section summarises the
results.

Inclusion of Spectrometers on the QT5062 PCB

The possibility of adding small spectrometers to the QT5062 PCB has been investi-
gated, and the initial experiments for the proof of concept has been made. A compact
spectrometer was bought from Hamamatsu which fit within the camera housing. The
specific spectrometer bought was the Hamamatsu C14384MA-01 Mini-spectrometer
which has 256 pixels and measures 11.5 x 4.0 x 3.1 mm. A testing setup was made
where a light source illuminates the uncoated rim on the FPI and the reflected light is
directed into the slit of the spectrometer. In essence the setup is identical to the FPI
mirror alignment setup presented in Chapter 4. The interference pattern caused by
the cavity in the FPI is measured by the mini-spectrometer and the absolute distance
can be found through the same equations as presented earlier. The big difference
between these two setups is the physical size of the sensor in each spectrometer.
Since the Ibsen spectrometer is equipped with a 2048 pixel linear sensor and the
Hamamatsu spectrometer is equipped with a 256 pixel linear sensor, the resolution
on the Hamamatsu spectrometer is extremely limited. While this is no problem at
small mirror separations, the problem becomes significant as the piezo elements are
fully extended and the mirror separation is at its maximum value. This is due to the
fact that the number of interference fringes rises as the mirror separation is increased,
and at some point the diffraction limit is reached. Figure 4.11 (A) shows the spectrum
of the interference pattern arising from the cavity between the thermal mirrors using
a broad band LED as a light source. The LED used is the Osram Oslon P1616 with a
spectral radiance in the 600-1050 nm range.

The Hamamatsu spectrometer was set to acquire spectra with an integration time of
1000 µs and 1000 spectra were continously sampled while the FPI scanned forwards
and backwards between 0 and 75 V. The spectrum in Figure 4.11 (A) is acquired at
the beginning of an FPI scan and therefore the interference fringes are easily visible.
The spectrum is plotted in the frequency domain which once again means that the
interference fringes are equidistant. An FFT was performed on the spectrum and the
result is shown in Figure 4.11 (B). Knowing the typical mirror distance from our FPI
the peak associated with the interference pattern can easily be distinguished from the
noise in the FFT spectrum. Figure 4.11 (B) shows the result of the FFT analysis and
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the peak position is marked with a red ’x’ and the FWHM of the peak is marked with
red vertical lines. In this particular experiment the mirrors were relatively separated
and the peak intensity observed in (B) corresponds to a separation of 8.5 µm. As
mentioned the interference fringes are smoothed out once the mirror separation
becomes too large which results in a less prominent peak following an FFT. Figure
4.11 (D) shows the measured spectrum with fully extended piezoelectric elements
and the resulting FFT is shown in (E). While the peak is much less pronounced at
full elongation the peak position can still be determined with a satisfactory accuracy.
Measuring a full spectrum and finding the peak position during an FPI scan, the
hysteresis curve of the piezoelectric elements is found once again. Note that the
absolute distance travelled is calculated by this method, in contrast to measuring
the interference fringes of the single wavelength laser diode. Thus, including the
mini-spectrometers on the QT5062 PCB would allow for an exact calibration of the
mirror separation for each HSTI acquired. The resulting mirror separation axis in this
experiment is shown in Figure 4.11 (C) where the distance is actuated in the range
8.5-17.4 µm, and both the forward and backward scan is included.
The frequency resolution of the FFT is limited by the number of samples which in the

case of the mini-spectrometers is low. Thus, the FFT peak position can be determined
with an accuracy of ±120 nm which is non-ideal for the mirror control algorithm and
band wavelength determination.
A pathway to achieving a high resolution mirror control is to illuminate the FPI
with light of two different wavelengths. Doing so makes up a beat plot due to the
interference of the light waves inside the cavity. This beat plot can be constructed
by hand picking different wavelengths using the Hamamatsu spectrometer. Figure
4.11 (F) shows the interference pattern arising from the multiplication of the signal
measured in pixel number 105 and 145 with corresponding wavelengths of 681 nm and
828 nm. The resulting graph shows the beat plot with declining intensity due to the
decreasing difference between the peak intensity minima and maxima. These results
are promising and show that the incorporation of the mini-Hamamatsu spectrometers
is a viable improvement of the mirror control and calibration.
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Figure 4.11: (A) shows the raw spectrum acquired using the Hamamatsu mini-
spectrometer. (B) shows the result from an FFT analysis of the spectrum shown in
(A). The red cross and the two red lines accompanying marks the full width at half
maximum lines in the FFT analysis. (C) shows the resulting mirror seperation from
logging the peak position found using the FFT analysis in (B). (D) (E) (F) The raw
output of the spectrometer during an FPI scan forward and backwards where 1000
spectrometer measurements were grabbed simultaneously. The figure shows the
direct product of the pixel readout of pixel 105 and 145 marked by broken lines in (A)
and (B). The black and red line in (C) mark the data points belonging to the spectra
shown in (A) and (B).

4.3 Summary and Conclusion

The experimental setup and working principle of the hyperspectral thermal camera
has been described. The setup can be divided into four separate parts which are
the FPI assembly, the collecting optics, the microbolometer sensor and the battery
package. The development of the hyperspectral thermal camera has been a continuous
process throughout the last three years and therefore HSTIs were acquired using
several different combinations of the improvements presented above. For the final
chapters of this thesis the main focus will be HSTI analysis and the state of the
hyperspectral thermal camera can be divided into two major prototype categories.
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The prototype categories are named ’HSTC V0.1’ and ’HSTC V0.2’ below, and their
main characteristics are summarised. The ’HSTC V0.1’ reflect the early version of the
camera and ’HSTC V0.2’ reflect the state of the camera at the time of writing.

Chapter 6
’HSTC V0.1’:

• 8.2 µm range piezo elements

• Homegrown PVD mirrors

• ⇠ 70 band image acquisition algorithm

• Visual check of mirror fringes and maximisation of FPI transmission following
piezo offset sweeping

• Two point wavelength calibration

• 1.25x gain, and GFID = 2800

Initially hyperspectral thermal images were grabbed in a single thread, and every
command was thus done serially. The sensor was uncooled, since the camera was
placed in laboratory conditions where the temperature is highly controlled.
Chapter 7 & 8
’HSTC V0.2’:

• 11.2 µm range piezo elements

• Mirrors produced by II-VI Incorporated

• ⇠ 140 band image acquisition algorithm

• Near perfect mirror alignment measured optically and no piezo offset

• Multipoint wavelength calibration.

• 4.0x gain, and GFID = 2800
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5

Methods for Data Analysis of
Hyperspectral Thermal Images

In order to fully comprehend the conclusions and analyses of the coming section, the
chapter is introduced with a description and detailed review of the methods used for
data-analysis and preprocessing of the hyperspectral thermal images.
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5.1 Imaging Data Preprocessing

In the following section a number of different techniques for data analysis will be
presented, all of which are essential for the analysis of hyperspectral thermal images.

5.1.1 Non-Uniformity Correction

The bolometer sensor is produced by micro machining a silicon slab, which naturally
induces a lot of production variations in each separate pixel, such as size, shape, and
defect density. These effects alter the performance of each individual pixel, which
again affects how the resistivity correlates with temperature. These effects create an
FPA pattern, which affect the readout values of the individual pixels in the form of
a constant offset as well as well as the correlation to incoming radiance. Thus, each
pixel has a linear relationship with the incoming radiance, which must be calibrated
for given that the goal is temperature prediction using a thermal imaging camera.
Such calibration is most often named a non-uniformity correction (NUC), and can
be carried out by imaging a uniform background at several different temperatures
[71, 72, 73]. The offset and responsivity to radiance changes are then found for each
individual pixel, and serves as a one time calibration of the entire sensor FPA. These
values are found for each pixel by the relationship

Lxi ,yj = Rxi ,yj · BLWIR(T) + Oxi ,yj , (5.1)

with Lxi ,yj following the notation introduced in section 1.8 and thereby denoting a
single thermal image frame acquired without an FPI. BLWIR thus again denote the
spectral radiance measured by the sensor in the entire sensitivity range 8-14 µm. Rxi ,yj ,
and Oxi ,yj denote the responsivity and offset measured in the pixel at position xi, yj.
The non-uniformity correction can be applied by

Lxi ,yj = axi ,yj · Rxi ,yj + Oxi ,yj + bxi ,yj , (5.2)

with axi ,yj and bxi ,yj being correction parameters for the responsivity and offset in
order to get a uniform image.
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5.1.2 Spectral Preprocessing

Mean Centering

The spectra in the HSTI can be mean centered in order to do a simple clustering of the
samples containing identical spectra. As the HSTI is mean centered it is modified by

L̄xi ,yj ,⇤ = Lxi ,yj ,⇤ �
1
l

l

Â
k=0

Lxi ,yj ,lk . (5.3)

This preprocessing technique can be highly beneficial, since it completely removes
the non-uniformity of the bolometer sensor. Thus, as we measure the spectrum of
a given sample within the LWIR and calculate the spectral mean, we get a set of
values that are only distinguished by the offset in the given pixel. As we subtract the
mean the resulting datacube will contain clean images in most of the spectral bands.
The datacube does, however, still suffer from the differences in responsivity in each
individual pixel.

Standardisation

Another highly useful preprocessing technique is standardisation calculated by

L0xi ,yj ,⇤ =

 
Lxi ,yj ,⇤ �

1
l

l

Â
k=0

Lxi ,yj ,lk

!
1

s(Lxi ,yj ,⇤)
, (5.4)

where

s(Lxi ,yj ,⇤) =

vuut 1
l

l

Â
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Lxi ,yj ,lk �

1
l

l

Â
k=0

Lxi ,yj ,lk

!2

. (5.5)

While this method produces images free from the fixed pattern it also removes most
of the intensity information in a HSTC. However, the shape of the underlying Planck
distribution is kept. Unless stated otherwise, this method is used for the principal
component analyses (PCA) carried out in this thesis. The PCA processing technique
is explained below.
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Normalisation

In some cases it is preferred to keep the intensity variation along the spectral axis,
and here the spectra have been normalised by

L̂xi ,yj ,⇤ =
Lxi ,yj ,⇤

Âl
k=0 Lxi ,yj ,lk

. (5.6)

Baselining

A special preprocessing technique is possible to perform when dealing with our
hyperspectral thermal imaging system. The technique will be named baselining and
it utilises the fact that at mirror separations lower than 3.8 µm the FPI acts as a perfect
mirror for the 8-14 µm thermal radiation. With mirror separations below this distance
the FPI will reflect all radiation emitted from the sensor itself. These images can then
be used as a baseline. The baselining is carried out by subtracting the spectral band
equal to zero from the spectra

Lxi ,yj ,⇤ = Lxi ,yj ,⇤ �Lxi ,yj ,lk=0 . (5.7)

5.2 Imaging Data Processing

In the following section the methods used for the data processing of hyperspectral
thermal images will be presented. Throughout this project the free to use sci-kit
learn library has been used for the implementation of machine learning algorithms
and data decomposition [74]. The methods have been implemented in a Python 3.7
environment. A selected number of methods has been used for this project, however,
the entire module counts several other methods that may be applicable.

5.2.1 Principal Component Analysis

Principal Component Analysis (PCA) [75, 76] is a highly useful tool within the
analysis of hyperspectral imaging data. Hyperspectral imaging data structures are
multivariate by nature, and often the important spectral components do not fill the
entire spectral axis and are strongly correlated. This results in datacubes that contain
much more information than necessary to explain the important features within the
datacube. The PCA is a multivariate statistical tool which enable data reduction
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and serves the purpose of simplifying the original data structure by transforming
it into a new structure. This new data structure consists of principal components
which are representation of the directions of most variance within the original data
structure. Thus, a PCA first identifies the hyperplane of highest variance in the data,
and then project the datapoint onto this plane. The second component describes
the hyperplane orthogonal to the first, which has the highest remaining variance. A
data reduction can then be carried out by selecting the number of planes required to
describe the data sufficiently, and ignoring the rest. Typically a dataset is noise and
information abundant, and in these cases a PCA is capable of selecting the relevant
and noise-less data from the rest of the dataset which can be highly useful for the
analysis of hyperspectral data. Additionally, the PCA is used for finding variance in
datasets that are too complex for human interpretation. In our case the PCA is used
to find the emissivity and radiance differences in individual spectra that are hard to
find manually. Presuming that we measure pure emission spectra of two objects with
differing emissivities but equal temperature, the principal components following a
PCA of these two spectra would at some point describe the measured variance in
emissivity. In the case of the HSTC the individual datapoints are highly correlated
to system specific variances, such as the bandwidth of the FPI. As we shall see, it is
therefore not guaranteed that the emissivity variance lies in the first component. A
two dimensional dataset of mixed variance in the 1st and 2nd variables have been
shown in Figure 5.1 (A). A PCA have been performed and the transformed data is
plotted in Figure 5.1 (B) with the two resulting principal components on each axis. In
Figure 5.1 (B) the dataset has been flattened along the directions of highest variance,
of which PC1 contain most of the total variance. Thus, a PCA is highly relevant for
the HSTC as well since the data acquired is influenced by a multitude of effects, such
as reflected, transmitted and absorbed light, temperature variance and emissivity
variance.
The mathematical starting point of the PCA is an NxM data matrix denoted X with N
measurements of a multivariate sample of M variables. In our case the hyperspectral
thermal three dimensional datacube measures the multivariate thermal spectrum
consisting of l bands and each datacube contains a number of measurements equal to
the set of pixels in the focal plane array (FPA) which is x · y = 786.432 measurements.
Formally, the PCA requires a standardised datacube where the mean subtraction
removes the offset correction and the division of the standard deviation eliminates
intensity variations for each pixel. This procedure leaves spectral variance for the
PCA to find. The principal components found by solving the equation system
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Figure 5.1: (A) Two dimensional dataset described by the cartesian coordinates x
and y. The solid black line indicates the plane closest to all datapoints, which in the
two-dimensional case is a linear fit. (B) A PCA have been made of the data presented
in (A) and is here plotted as the first two principal components.

L0x⇥y,l = TPT + E , (5.8)

where P is the l⇥ K loading matrix and T is the (x · y))⇥ K score matrix. K lies in
the range from 1 to l and determines the number of principal components. Thus, the
number of principal components can be chosen freely, and K would have to equal l in
order to explain all the variance in the original datacube. The reader is referred to the
original work of Wold et al. for a full description of the mathematical decomposition.
In the following sections PCA is used as a tool for the initial analysis of hyperspectral
thermal images, in order to locate variance within a datacube. In some cases the PCA
is used in combination with a K-means analysis, which is the subject of the following
section, in order to locate the regions within an image frame where the distance to
the hyperplane of highest variance in each principal component is the same. These
regions are then assumed to have equal spectral features.

5.2.2 K-means Analysis

The K-means algorithm is one of the most simple machine learning algorithms, which
can be extremely powerful in combination with the PCA clustering. The aim of k-
means clustering is to partition the dataset into a predefined number of clusters. Each
of these clusters are calculated by minimising the distance between each datapoint
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and the center of the cluster. In this regard it is immediately clear why the k-means
algorithm and PCA are powerful, since the PCA creates clusters, while the K-means
algorithm searches for and find the individual datapoints within these clusters. The
k-means algorithm will then calculate

n

Â
i=0

arg min
µj2C

(||xi � µj||2) , (5.9)

and the minimisation of such problem can be carried out through various algorithms.
The important fact to remember is that given a set of individual data points xi of
n points the k-means algorithm will place the centroid, µj, of the cluster C in the
point that minimises equation 5.9. Equation 5.9 then returns the sum of all distances
between the centroid and the individual data points. The number of clusters chosen
for a given dataset may vary, and typically the algorithm is iterated over a range of
total amount of clusters. The total sum of squared errors (SSE) can then be plotted
as a function of the number of clusters, which typically will drop rapidly due to the
square in equation 5.9. Having individual collections of data points separated in
groups will result in an ’elbow’ in this plot, which may be used to reveal the optimal
amount of cluster centroids. These plots will be presented during the analysis of
HSTIs as the SSE plotted as a function of the number of clusters.

5.2.3 Multinomial Logistic Regression

The post-processing techniques presented until now has been examples of unsuper-
vised models which may be used to analyse and process data without previous fitting
or training. During this project a Multinomial Logistic Regression (MLR) has been
used to sort new and unknown data into a specified set of classes. These classes
are created during the model creation phase and therefore, the logistic regression
classifier is a supervised learning model. The purpose of using the MLR model was to
verify that spectral differences in the thermal range could be measured and recognised
on an individual pixel level based on the pre-processed data obtained from the HSTC.
The MLR model works by calculating the probability that an instance of input data
belongs to one of the pre-specified classes. Given two possible classes the Logistic
Regression model will calculate the probability of the input data belonging to either
one of the two. The class having the highest probability, which in this case is > 50 %, is
chosen by the model and the output is converted to a binary result. Thus, the positive
class is labelled "1" and the negative class is labelled "0". The logistic regression
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model calculates a weighted sum and outputs the logistic of this result, based on the
equation,

p̂ = hq(Lxi ,yj ,⇤) = s(`T · Lxi ,yj ,⇤) , (5.10)

where p̂ is the probability that the input spectrum Lxi ,yj ,⇤ belongs to the class super-
vised class hq . The probability is calculated based by the s(t) function which takes
the measured spectrum as input weighted by qT . The s(t) function is defined as

s(t) =
1

1 + exp(�t)
. (5.11)

Having calculated the probability of the input features belonging to the the class hq ,
the result can be binary formulated as

ŷ =

(
0, if p̂ < 0.5,

1, if p̂ � 0.5.
, (5.12)

where the input spectrum is assigned to the class hq given that the probability is
higher than 0.5. As mentioned the logistic regression model can be expanded to
support multiple classes directly and in the following sections the MLR model is
trained based on a set of known classes fitted from previously measured spectra. The
fitted model is subsequently used to predict the probability of an unknown spectrum
belonging to each class. Additional information on the MLR model, and a wide
variety of other classification models can be found in Abraham et al..

5.2.4 Partial Least Squares Regression

The partial least squares regression (PLS) was invented in 1975 by Herman Wold,
and is further development of the multiple linear regression where a number of
properties or output values Y is described by a number of input variables X. The
multiple linear regression method is typically used for systems of few uncorrelated
variables, whereas the PLS model is capable of predicting the Y properties based
on a large amount of mutually correlated variables. In the case of the HSTC the
input variables are hyperspectral datacubes and thus represented by Lx⇥y,l and the
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predicted output values Y is dimensioned by (x ⇥ y)⇥ M where M can have any
value. In this project the output values becomes univariate since the PLS models will
be used to predict the temperature of a given input spectrum. In principle, a PLS
model can be trained consisting of M = Tobject + el values, in order to predict the
temperature and emissivity from a given input spectrum. Experiments involving such
models was not carried out in this project. The PLS model bears resemblances with
the PCA, however the PLS searches for the covariance for the planes of maximum
covariance between the input block, Lx⇥y,l, and the output block, Y, through the
relations

L0x⇥y,l = TPT + E

Yxi⇥yj ,⇤ = UQT + F , (5.13)

with (T, P) and ((U, Q)) are the scores and loadings for the input and output, re-
spectively. During PLS fitting the number of components used for the scores and
loadings matrices alter the prediction error of the fitted model, and an optimum
is typically found between under fitting, where relevant data of the Lx⇥y,l is left
out of the equation, and over fitting where irrelevant noise disturbs the prediction
accuracy. During model training the PLS model will be fitted perfectly by including all
components in the decomposition, and therefore the optimum number of components
is either chosen arbitrarily or by testing multiple PLS models of different number of
components on a dataset kept for evaluating the model performance. The underlying
mathematics of the PLS regression can be found in the original reports, and later
reviews describing the applications for chemical and physical systems [78, 79].

5.3 Summary and Conclusion

This chapter has provided a summary of the post processing techniques used for the
analysis of hyperspectral thermal imaging data in this project. Several pre-processing
techniques have been described as well, where each pre-processing technique have
different effects on the acquired spectra. These effects have a high relevance for the
analysis of hyperspectral data, since they lay the basis for the choice of post-processing
and most of the derived conclusions in each experiment.
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6

Hyperspectral Thermal Imaging Using
Homemade Mirrors

In the following chapter a selected number of hyperspectral thermal images will be
presented to the reader. The images presented are among the earliest captures using
the HSTC and therefore lay the basis for understanding the progress made during the
three years of this PhD-project, as well as showing a variety of the use-cases within
the field of hyperspectral thermal imaging.
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6.1 Hyperspectral Thermal Imaging at Room Temperature

The following section presents an experiment with a goal of performing hyperspectral
thermal imaging at room temperature in mind. While image acquisition at room
temperature was not an official success criterion at the start of this project it changed
into an important milestone if the camera is to be used outside of the laboratory.
The application of a microbolometer chip in a mobile hyperspectral thermal imaging
system has been demonstrated to be feasible in the studies of SO2 plumes from
active volcanos based on a Sagnac interferometer [80, 81]. Thus, the goal of room
temperature imaging should be within reach using the microbolometer chip and the
following sections present a short analysis based on the earliest attempts on room
temperature imaging using homemade mirrors for the FPI.

6.1.1 Experimental Methods

An aluminium block measuring 160 mm⇥ 160 mm was covered in several strips of
polyimide tape (PI) to increase the emissivity of the surface. PI is widely known
to have a high emissivity and good temperature resistance, which will be relevant
later. The increased emissivity of the aluminium block was expected to improve the
signal-to-noise ratio in this experiment. Five samples were used in total consisting
of a circular borosilicate glass petri dish, a 10 mm thick square piece of plywood,
a Vantablack[82] sample, a bare section of the aluminium block surface, and the
PI region of the aluminium block. The Vantablack sample is dimensioned 40x40x3
mm and is used as a black body reference. This sample was produced by Surrey
Nanosystems and consists of an aluminium plate onto which a covering layer of
carbon nanotubes is grown.
At this point in time the hyperspectral thermal camera corresponded to version ’V0.1’
as introduced, and thus it was equipped with a the high loss homegrown FPI mirror
set. The transmission and reflection profile of both thermal mirrors are shown in
Figure 3.2 (A) and (B). The piezo elements used during these experiments were capable
of expanding ⇠8.0 µm, covering the first order transmission and approximately half
of the second order transmission, as can be seen in Figure 3.12. A single hyperspectral
thermal image (HSTI) containing 70 spectral bands was acquired and the raw data
was standardised in order to perform a PCA of the entire cube and thus

L1024,768,70
Preprocessing
========) L01024,768,70 .

The HSTI was acquired using a sensor gain of 1.25x and a GFID voltage of 2800 mV.
The wavelength axis of the HSTI was calculated by scanning the FPI and determining
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the two points with maximum intensity transmitted through the FPI with a 10 µm
bandpass filter in front. These two points correspond to the first and second order
transmission of light with the bandpass filter wavelength. The correlation between
these points and the interference fringes measured from the photodiodes were used
to calculate the wavelength of each individual band in the HSTI. This method was
later revised, which is elaborated in Chapter 7.

6.1.2 Results and Discussion

Having the FPI directly in the optical path of the collecting optics attenuates the total
transmission within the range 8-14 µm by ⇠ 95 %. The attenuation was measured by
numerical integration of the FTIR measurement of the transmitted peak shown in
Figure A.4 (A). Measuring the radiance from objects at RT leaves a very small amount
of light to be detected by the microbolometer. Thus, in order to separate the signal
from the noise a PCA was carried out of the datacube.
The results of a PCA of the HSTI is shown in Figure 6.1. These figures show the
ordered reconstructed images from the principal component analysis. As explained,
the PCA finds the hyperplanes in a multidimensional dataset with the highest variance,
and transforms the data into the orthogonal planes of highest variance. The resulting
images are thus representations of the features in the HSTI with highest variance
ordered from highest to lowest. PC1 in Figure 6.1 (A) shows an image dominated
by the a radial intensity gradient. This intensity gradient is a result of the spectral
bending and will be visible in most images presented to the reader. The radial
gradient is observed in PC2 as well but hardly visible in PC3 in Figure 6.1 (C). The
experimental setup is hardly visible in any of the PCs in Figure 6.1, and Figure 6.1 (D)
shows PC4 where no features is seen. This PC is representable for the higher order
PCs in the 70 component analysis. The sample positions had been found prior to this
experiment, and selected regions of each are marked by 100x100 pixel bounding boxes
in Figure 6.1 (A). The abbreviations BG, AL, VB, PI and W are short for borosilicate
glass, aluminium, Vantablack, polyimide tape and wood. Figure 6.1 (F) shows two
kinds of spectra of the standardised HSTI for each sample. The solid line represent
a single pixel spectrum, and the dashed line represent the mean spectrum of the
100x100 pixels within the bounding box

100px box:
1

1002

+100

Â
xi ,yj

L̄xi ,yj ,⇤ .

The spectra are noise dominated and the mean spectra within the bounding boxes
show no apparent spectral differences between the samples. This conclusion is backed
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Figure 6.1: (A)-(D) reconstructed images of the PCA components 1-4 following a
70 component analysis. (E) The normalised explained variance of each individual
principal component. (F) Measured spectra of the samples marked in (A). The dashed
lines represent individual pixel spectra and the solid lines represent meaned spectra
within the bounding boxes in (A) calculated by 1

1002 Â+100
xi ,yj

L̄xi ,yj ,⇤

by the PCA not highlighting sample features in any PCs. Figure 6.1 (E) show the
normalised explained variance of the PCs and here it is seen that PC1 only contribute
to ⇠ 10 % of the measured variance in the original HSTI. This too backs the conclusion
that mostly noise is measured, since a common hyperplane for random noise is hard
to find in a multidimensional space. Note that an overall shape of the measured
spectra is observed, indicating higher intensity centered around a wavelength equal
to 10.5 µm. At this wavelength, the homemade mirrors had the lowest reflectivity and
a relatively low loss, leading to low attenuation and thus a higher intensity measured
by the bolometer. To summarise, this datacube was noise dominated and an attempt
to solve this problem was carried out. A common circumvention of low signal to
noise is to summarize several datapoints and exploit that white noise is random in
contrast to the measured signal. Summming several datapoints therefore increase the
contribution of the signal compared to the noise and the signal may then be more
easily extracted by a PCA. This is possible with our hyperspectral camera as well, and
therefore a data series was acquired consisting of 50 images of the same sample scene.
One issue arises in the summation of HSTI from the fact that the number of bands in
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the HSTI datacube differs due to the alignment procedure during imaging. Thus a
summed datacube can only be constructed with a size equaling the smallest. In this
experiment the resulting datacube has 69 spectral bands

L1024,768,l
50xHSTI sum
=======) L01024,768,69 .

Figure 6.2 shows the eight first principal components of the summed datacube from
the 50 individual HSTI acquired at room temperature. While the two first principal
components PC1 and PC2 shown in (A) and (B) in Figure 6.2, both are dominated
by the spectral bending mentioned earlier, PC3 shown in (C) in Figure 6.2 reveals a
more clear image than PC3 in Figure 6.1 (C). The contours of the samples are slightly
visible which is most clearly seen by the circular BG sample and the apparent variance
difference between the low emissivity strip of AL and high emissivity strip of PI. The
remaining principal components are once again dominated by noise, however, the
graph of normalised explained variance shown in 6.2 (E) tells that much more variance
is contained in the first principal component compared to Figure 6.1. Additionally,
the spectra shown in 6.2 (F) reveals that the summation of datacubes is a viable option
for decreasing the single pixel spectrum noise.
Based on these measurements it was concluded that the most dominating noise
contributor in the HSTIs is the spectral bending, since it was located in the first two
principal components for both RT experiments. The spectral intensities related to the
samples comes second to this effect, and it is concluded that the signal-to-noise ratio
at RT for the homegrown was too low for additional quantitative analysis. It was then
decided to increase the signal-to-noise ratio by other means. Here, the most obvious
experiment was to increase the temperature in order to increase the radiance from the
samples.

6.2 Separation of materials using logistic regression at 100 °C

The remaining part of this chapter is dedicated to an experiment carried out where
the signal signal-to-noise ratio was increased by imaging heated objects. The images
and analysis is presented in the paper Acquisition and Analysis of Hyperspectral Thermal
Images for Sample Segregation published in the journal Applied Spectroscopy. A
summary of the findings is added below including most of the results and analysis
section. The section has been edited to fit with the notation used in this thesis. The
entire article in its published version has been included in Appendix C.1.

91



6.2. Separation of materials using logistic regression at 100 °C

Figure 6.2: (A)-(D) reconstructed images of the PCA components 1-4 following a 69
component analysis. The PCA was carried out on a summed over 50 individual HSTI.
(E) The normalised explained variance of each individual principal component. (F)
Measured spectra of the samples marked in (A). The dashed lines represent individual
pixel spectra and the solid lines represent meaned spectra within the bounding boxes
in (A) calculated by 1

1002 Â+100
xi ,yj

L̄xi ,yj ,⇤

6.2.1 Experimental Methods

The imaged object consisted of an aluminium block of 5 cm thickness and 16 cm height
x 16 cm width onto which various samples were attached. The surface was covered
with several strips of standard 25 µm thick PI in order to increase the emissivity.
The aluminium block was heated to 103 °C by a constant current heatplate placed
a short distance behind the block itself. After a waiting period of several hours, the
temperature of the entire block stabilised to a precision of < 0.1 °C checked by a digital
thermometer measuring inside a hole drilled into the aluminium block. Heating
the block ensures sufficient thermal radiance from the samples in each band of the
HSTI. Additionally, the waiting period ensures that all samples remain at a constant
temperature throughout image grabbing, even though the surface temperature of the
individual samples might vary. Three samples were attached to the front side of the
PI using silicone heatpaste in order to get a high thermal conductance as well as good
attachment. Each corner of the Vantablack sample is free from carbon nanotubes,
and therefore consists of bare aluminium as can be seen in Figure 6.3 (B). A 64x54x1
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Figure 6.3: (A) A raw standard thermal image of the imaged scene with no FPI in
front of the camera lens. (B) A masked image of the materials present in the image.
The background consists of a aluminum plate where the surface is covered by PI. (C)
The mean spectrum observed from each individual material in the image [2].

mm aluminium plate painted with regular black paint and a Ø 60 mm petri dish
made from borosilicate glass were also attached to the polyimide tape as shown in
Figure 6.3. The aluminium block with the samples was placed at a distance of 45
cm from the front of the camera. The short distance to the heated aluminium block
has a small effect on the temperature of the bolometer chip itself; when the scene is
changed, a new equilibrium temperature is reached within seconds and therefore had
no influence on the measurement.

The HSTI contains 70 spectral bands within the wavelength interval covering the
bolometer sensitivity as can be seen in Figure 6.3 (C). The spectrum in each pixel was
normalised to a sum of 216 in order to eliminate the most extreme intensity variations
caused by temperature differences leaving mostly spectral differences and thus

L1024,768,⇤
Preprocessing
========) 216L̂1024,768,⇤ . (6.1)

The FPI is continuously scanned from a physical separation of 4 µm to 7.5 µm, so the
first order transmission of the filter is shifted from 8 µm to 15 µm, which corresponds
to the spectra indicated with "1st order" in Figure 6.3 (C). As the FPIs mirrors are
scanned beyond 7.5 µm, the first order transmission moves out of the sensitivity range
of the bolometer sensor, however, the second order transmission starts moving into
the sensitivity range. Further scanning of the mirrors up to 10 µm separation distance
was then used to acquire the spectrum in the wavelength range from 7.5 µm up to 10
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µm as indicated by "2nd order" in Figure 6.3 (C).
A NUC is calculated for each pixel in order to eliminate these sensor artefacts. In
our calibration, an aluminium block covered with PI functions as the graybody.
The calibration was performed by letting the aluminium block fill the image plane
whereafter 23 images were sequentially captured at temperatures ranging from 19.3 °C
to 95.6 °C. These images are used to find the correction parameters for the sensitivity
and offset for each pixel as explained in Section 5.1.1. The correction parameters were
subsequently used on all raw images from the hyperspectral datacube.
The specific HSTI analysed in this study was originally 1024x768 pixels with 70
spectral bands. In order to simplify the analysis, the background located outside of
the aluminium block is cropped out of the image plane leaving a HSTI of 660 x 640
pixels with 70 spectral bands and thus

L1024,768,70
Spatial Crop
=======) L660,640,70 .

6.2.2 Results and Discussion

A standard thermal image, shown in Figure 6.3 (A), was taken alongside the HSTI in
order to compare the two methods. Comparison of the thermal image presented in
Figure 6.3 (A) and the sketch of where the samples are positioned in Figure 6.3 (B)
shows that the contours of the different samples are relatively easily distinguished.
The least noticeable difference lies between the Vantablack surface and the PI back-
ground. Table 6.1 presents the mean and standard deviation of the intensity values
of all five samples. It can be observed that Vantablack and PI are indistinguishable
having essentially the same mean and standard deviations. Black paint and glass
show the same behaviour with almost equal mean intensities but slightly different
standard deviation. However, both have intensities within a standard deviation of the
other, making them indistinguishable by standard thermography. With our hyper-
spectral thermal imaging system, however, we are capable of distinguishing between
the samples, which initially can be seen by observing Figure 6.3 (C). From the figure it
is immediately seen that the glass sample has a significant dip in 2nd order emission
intensity around 9 µm, which is attributed to the Si-O-Si bond[83]. The remaining
samples have more similar spectra and therefore statistical regression models were
used to distinguish between these.

A PCA of the hyperspectral datacube revealed the six principal components (PCs) with
the highest variance, shown in Figure 6.4. Figure 6.4 (G) shows the relative variance
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Sample Material Mean Intensity s
Vantablack 227.3 5.5

Polyimide Tape 227.7 5.6
Black Paint 210.4 2.5

Borosilicate Glass 208.2 9.6
Aluminum 186.2 13.7

Table 6.1: Mean grayscale intensities and standard deviations, s, for each individual
sample based on the thermal image presented in Figure 6.3

explained by each of the six principal components. The first three components (see
Figure 6.4 (A)-(C)) explain 91.4 % of the total variance. Each successive component
contains less than 0.3 % of the total variance. The distribution of the variance in the
remaining components is seen in Figure 6.4 (H). Based on the data in Figure 6.4 (G)-(H)
it can be concluded that the variance continues to gradually descent at components
below 8.

PC1 and PC3 clearly distinguish the borosilicate petri dish from the rest of the
image. It can be noted that the edge of the petri dish has a different intensity
from the rest of the dish. This is due to the fact that the edge walls of the petri
dish protrude from the surface of the heated aluminium block giving a noticeable
temperature difference relative to the remaining part of the glass. The clear radial
gradient across the image in Figure 6.4 (B) suggests that this component contains
information related to temperature variations across the aluminium block or the
spectral bending. This leaves PC1 and PC3 through PC6 with the information related
to material characteristics. PC3 and PC5 contains a noticeable dark line between the
Vantablack and the black paint marked by red bounding boxes. This is a region on the
heated aluminium block where the PI is overlapping and thus two layers are present.
This region is not visible on the pure thermal image shown in Figure 6.3 (A), which
again underlines the fact that the PCA of the hyperspectral datacube is capable of
distinguishing between the aluminium/PI region and the PI/PI region. This may
be described by the transparency of the 25 µm PI at selected wavelengths within the
HSTI. A reference FTIR measurement of a single layer of PI is shown in Figure A.7
revealing transmission regions located at wavelengths of 10-11 µm and 13-14 µm.
The ability to distinguish the samples from the hyperspectral images was tested
using the Multinomial Logistic Regression model. The model was given five classes,
which corresponds to one class per material present in the image. Initially the full
hyperspectral datacube was used as input features to fit a prediction model. The fitted
model was given a balanced weight of the classes, which ensures that the cost function
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Figure 6.4: The figure shows six reconstructed images from the six first principal
components following a principal component analysis of the hyperspectral image
stack shown in Figure 6.3. Additionally inset G and H shows the relative explained
ratio for the principal components following the PCA. Figure G shows the relative
variance for the initial seven principal components and Figure H shows the relative
variance for the last 26 principal components [2].

is equally biased for all classes. Additionally, the Liblinear[84] solver was used to find
the global minimum of the cost function. A slightly less accurate model can be fitted
where the first five principal components are used as input features, which increases
the speed of the process. This again underlines the promising applicability of the
technique since accuracy might be sacrificed for speed in a handheld camera.
Since computation time was no issue in this case, the results obtained from the full
hyperspectral datacube are presented. The model was fitted to a selected region of
the hyperspectral image shown in Figure 6.5 (A). Hereafter the full hyperspectral
datacube was fed to the model to predict and find the samples present in the image.
The results from this prediction are shown in Figure 6.5 (B) and the performance of the
model is summarised in the confusion matrix shown in Figure 6.5 (C). The confusion
matrix presented in Figure 6.5 (C) has been normalised for each row, and thus the
main diagonal shows the true positive rate (TPR) for each sample, which is the ratio
of true positives to the sum of true positives and false negatives. During this analysis,
focus is put on the TPR since this makes the most sense for our application. The
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Figure 6.5: Figure A shows the mask used to fit the Logistic regression model. The
dark blue region marked "Background" is unused and therefore left out of the fit.
Figure B shows the results following a prediction of the materials using the fitted
model and the full hyperspectral image stack. Figure C shows the confusion matrix
of the predictions versus the true pixel values determined by image B in Figure 6.3.
Figure D shows the results following a prediction of the materials using 69 principal
components. Figure E shows the confusion matrix of these predictions versus the
true pixel values determined by image B in Figure 6.3. For both confusion matrices
the abbreviations; Vb, BP, BG, KT, and Al have been used for Vantablack, black paint,
borosilicate glass, PI, and aluminium respectively [2].
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highest TPR is obtained for borosilicate glass with a value of 98 %. This is followed
by black painted aluminium with a TPR of 92 %, PI with 83 %, bare aluminium with
75 % and Vantablack with 59 %. It is important to note the fact that five classes
are defined. Therefore, a completely random guess would on average result in a
20 % TPR of each class no matter its relative occupation of the image. Within the
area covered by PI (see Figure 6.3 (B)), the prediction of PI in Figure 6.5 (B) shows
a slight gradient from the corners to the center region of the image, with the most
correctly predicted pixels concentrated in the center. Similarly, part of the Vantablack
sample is mistakenly predicted to be PI where most errors appear near the center
of the image. This pattern is very similar to the one observed in PC2 shown in
Figure 6.4 (B), which was ascribed to the spectral bending. Therefore, in an attempt
to improve the prediction, another model was fitted using 69 out of 70 available
principal components with PC2 excluded. Excluding the principal component which
primarily contain the spectral bending contributions is an attempt to flatten out
the bending datacube, and thus performing the transformation between the cubes
shown in Figure 4.6 (A) and (B). The performance of the resulting model is shown in
Figure 6.5 (D) and (E) showing the predicted pixels and the summarising confusion
matrix, respectively. As can be seen in the confusion matrix in Figure 6.5 (E) this
model performs slightly better than the previous one having all samples predicted
with a TPR of at least 70 %. More importantly the gradient observed in Figure 6.5 (B)
is much less pronounced underlining the fact that true material characteristics are
present in the spectra. Furthermore, it should be noted that the overlapping PI ’line’
is much more apparent in Figure 6.5 (D) than (B) underlining that even slight spectral
features is measured and can be distinguished from an image. The most surprising
result is the capability of distinguishing between Vantablack and PI which, as seen in
Figure 6.3 (C), have very similar spectra. Figure 6.6 (A) and (B) show the 2nd and 1st
order mean spectra of each individual sample, respectively. The raw mean spectra of
each sample have been ratioed against the PI spectrum, which exhibits the highest
intensity across the entire measurement range, and thus the following calculation is
performed:

Relative sample spectrum:
L̂xi=PI,yj=PI,⇤

L̂xi=PI,yj=PI,⇤
.

It is immediately noticed that small variations are measured between the two samples.
These variations most likely originate from the PI, since the Vantablack sample is
expected to perform essentially as a blackbody source of radiation. Another important
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Figure 6.6: (A) The 2nd order spectrum of each sample ratioed against the mean PI
spectrum. (B) The 1st order spectrum of each sample ratioed against the PI spectrum.
(C) The mean value of the principal components for PI and Vantablack plotted for
components 1-11. The standard deviation is used as error bars [2].

feature is the fact that the differences can be measured in each individual pixel. A
visualisation of this is shown in Figure 6.6 (C) where the mean principal component
value of components 1-11 is plotted. The standard deviation of each component is
plotted as error bars for the related sample. As can be seen the components 1,2,5,
and 9 show variations between the two samples where the standard deviations of
the two samples overlap to a less extent than the remaining principal components.
It is believed that these principal components are the main contributors to the 70 %
correctly predicted Vantablack pixels.
The reproducibility and validity of the sample segregation and recognition was
checked by acquiring three separate HSTI of the same scene followed by an analysis
similar to that in the main manuscript. Each hyperspectral data cube consists of 70
images acquired at wavelengths covering the sensor sensitivity range from 8.0-14.0 µm.
However, since the FPI moves dynamically, the images are not grabbed at the exact
same image wavelengths as mentioned in the previous section. The difference in band
wavelength is generally low, however, it becomes significant in some cases. Figure 6.7
(A)-(C) show 3 sequential measurements of the mean spectrum of each sample present
in the related image. All sample positions are identical and the HSTIs were grabbed
subsequently following each other. It is seen that small deviations occur for some
of the samples. This is particularly noticeable in the short wavelength region which
might be explained by small differences in the FPI mirror alignment.
The Logistic Regression model was fitted using 69 principal components of a 70
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component PCA performed on the original images. In all cases the second component
was sorted out and ascribed to spectral bending which is nonuniform on the image
plane. The model was fitted to selected representable regions of all samples from
all three images. This model was then used to predict all pixels based on the 69
remaining components. The results from this prediction is shown in Figure 6.7 (D)-(F).
Figure 6.7 (G)-(I) show the confusion matrices of the predictions made in Figure 6.7
(D)-(F). It can be noticed that the TPR of Vantablack pixels is reduced from 0.7 obtained
by fitting the prediction model on the same image as the prediction test, where the
TPR across three HSTIs lies at 0.3. The lower TPR can be ascribed to the difference in
wavelength for the individual bands which the prediction model is unable to take into
account. The effects related to the instability of the image acquisition thus dominates
the spectral differences observed between Vantablack and PI in a single image.
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Figure 6.7: (A)-(C) The relative mean spectra have been shown for all five samples
in the HSTI. Each sample spectrum have been divided by the mean PI spectrum. (B)
The predictions following the application of the MLR model is shown for each HSTI
in the reproducibility test. A single MLR model have been calculated based on all
three HSTIs, and this model was then applied on each individual HSTI. (G)-(I) The
confusion matrices belonging to the predictions shown in (D)-(F).[2]
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6.3 Summary and Conclusion

Two experiments have been included in this chapter showing the results of a hy-
perspectral thermal imaging experiment carried out using samples at RT and at an
elevated temperature of 100 °C. Both experiments were carried out using an early
version of the HSTC equipped with short range piezoelectric elements in the FPI and
homegrown mirrors with a relatively large amount of absorption. The results of the
room temperature imaging were inconclusive in the regard of measuring spectral
differences between materials of various emissivities. An attempt of improving the
signal-to noise ratio was carried out through the summation of 50 separate HSTIs
without luck. This led to an experiment where the radiance of the imaged samples
was increased by heating the samples to ⇠ 100 °C. The HSTI acquired following
this procedure was used to successfully segregate five individual samples based
on spectral differences. The sample segregation was possible using a single HSTI,
however, testing a classification model across three independent HSTIs revealed weak
segregation of the Vantablack and polyimide tape samples. The main contributor to
the weak reproducibility is ascribed to system specific variances during acquisition.
Such variances include the microscopic mirror alignment during acquisition and the
variance in the exact mirror separation during acquisition.
The results presented in this chapter proofs the principle of the hyperspectral imaging
system and demonstrates that even slight variances sample emissivities is detectable.
The results are among the earliest obtained using the HSTC and a significant amount
of time was spent improving the system, throughout this project. As we have seen,
the experiments involving the perfection of the FPI mirrors was a major part of the
development and the remaining chapters are based on results obtained following
inclusion of low absorption mirrors in the FPI.
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7

Hyperspectral Thermal Imaging Using
II-VI Mirrors

This chapter is based on an investigation of the surface temperature prediction of
samples requiring differentiated emissivity settings for a true temperature prediction.
The study covers the possibility of recognising sample spectra automatically, using
the HSTC, which allow for application of a correct temperature prediction model
based on previous calibrations.
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7.1 Surface Temperature Determination of Glass Types Using
Hyperspectral Thermal Imaging

In the previous chapter it was argued that the signal-to-noise ratio of our camera
system was too low to acquire hyperspectral thermal images at room temperature
with sufficient information to conclude anything quantitatively. As mentioned in
Chapter 3, elimination of absorption in the FPI mirrors is the most important factor for
improving the signal to noise ratio without the need for heating the imaged samples,
and the following images were acquired using the second version of the hyperspectral
camera abbreviated ’V0.2’. In the following experiment the reproducibility test carried
out as a final part of the previous chapter was included by segregating the datasets
used for model training and model evaluation. Additionally, the samples chosen for
this study are inspired by the previous studies using the HyperCam-LW for mineral
emission spectra [24, 25, 26, 27].
The following images and analysis are presented in the paper Surface temperature
determination using long range thermal emission spectroscopy based on a first order scanning
Fabry-Pérot interferometer which is currently under peer review in the journal Optics
Express. A description of the experimental setup and a summary of the results follow
in the sections below. The work was made in collaboration with former master student
Mads Nibe Larsen.

7.1.1 Experimental Methods

The experiment was carried out using Thorlabs PK2FMP2 piezo stacks in the me-
chanical assembly of the FPI. The piezo stack is operated by applying a voltage
in the range 0-75 V and has an expansion of 11.2 µm at optimal conditions. With
this expansion range the FPI is scanned through the entire first and second order
transmission peaks along with parts of the third order transmission shown in Figure
3.12 in Chapter 3. Additionally, the FPI is assembled using an identical set of II-VI
Incorporated mirrors with a mirror coating matching that introduced in Chapter 3.
The images were acquired using a GFID voltage of 2800 mV and 4x analog gain on
the microbolometer sensor in order to optimise the temperature range and sensitivity
of the sensor. The images were acquired using the latest version of the operating
software, which allows the hyperspectral thermal camera to acquire 140 spectral bands
while scanning the FPI. The sensor itself, collecting optics and camera hardware, is
identical to that specified in Chapter 4. Additionally, all images were standardised
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and cropped during preprocessing and thus the datastructure is

L1024,768,l
Preprocessing
========) L0800,768,140

In the experiment, an aluminium block was used with samples of glass types at-
tached on the front surface. The aluminium block is placed against a heating element,
which is used to control the temperature of the entire setup. In order to monitor the
temperature, a digital thermometer is placed in a hole drilled into the aluminium
block. Two alumina (AlO2) samples were used, one alumina ceramic bar, and the
other pure sapphire wafer. The two remaining glass types are the two silicon dioxide
(SiO2) variants of fused silica and borosilicate glass. While fused silica is an ordered
crystal, the borosilicate glass resembles an amorphous structure with boron trioxide
incorporated into the matrix.
The calibration of the FPI was modified for this experiment, in order to find an
accurate measure for the mirror separation during image acquisition. The calibration
was carried out using three bandpass filters from the company Andover Corporation.
The bandpass filters had center wavelengths of 8.226 µm, 10.224 µm, and 11.322 µm,
respectively, which covers most of the sensitivity range of the sensor. The peak trans-
mission and full width half maximum of each filter is 461 nm & 96 %, 356 nm & 77 %,
and 498 nm & 92 %, respectively. The transmission profile of each filter measured
by FTIR is shown in Figure 7.1 (B) for each bandpass filter in the wavelength range
of 8-16 µm. In this figure it is seen that each filter has a single transmitted band
within the main sensor sensitivity range of 8-14 µm. It is, however, also observed
that each filter transmits light at wavelengths above 14 µm, which can be measured
with the bolometer chip owing to the sensitivty tail of the sensor in this range. The
sensitivity of the sensor is sketched as a part of Figure 7.1 (B). A simulation of the
theoretically observed transmission spectrum through each bandpass filter is shown
in Figure 7.1 (A). Here, the FTIR transmission measured through each bandpass filter
has been multiplied with the theoretical sensitivity of the bolometer sensor. The
resulting spectrum is further multiplied with the theoretical transmission of the FPI
calculated using the TMM at the mirror separations shown in Figure 7.1 (A). Figure
7.1 (C) shows the spectrum measured through the bandpass filters imaged by the
hyperspectral thermal camera. The spectra are acquired from three HSTIs where
the field of view was covered by the bandpass filter. The figure shows the mean
spectrum from each HSTI calculated from a 100x100 pixel square in the center of
the image. This part of the image was used in order to circumvent any wavelength
correction caused by the spectral bending, which arise from the angular incidence
of the thermal light. Comparing Figures 7.1 (A) with Figure 7.1 (C) it is seen that
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Figure 7.1: (A) Raw FTIR spectra of the bandpass filters multiplied by the simulated
transmission of the FPI at the mirror separation indicated at the x-axis. (B) Raw FTIR
measurements of the three bandpass filters used as part of the FPI calibration. (C)
Mean spectra of the measured transmission through the three bandpass filters. The
blue dots indicate the band number of the transmission peaks in (A). (D) A calibration
curve obtained using the peak positions of the transmission through the bandpass
filters.

the theoretically calculated spectra are comparable to those measured experimentally.
Additionally, note that the transmission peaks observed for the 10 µm bandpass filter
around 14 µm in Figure 7.1 (B) are measured by our hyperspectral imaging system at
a mirror separation distance of 8 µm.
The mirror separation axis has been calibrated using the position of the transmission
peaks measured through each bandpass filter. The band number (lk) of each transmis-
sion peak is found for each HSTI grabbed in this data series. This band number (lk) is
plotted against the true mirror separation of each transmission peak, which is found
theoretically as explained earlier, and the corresponding measurements are shown in
Figure 7.1 (C). The red crosses mark the maximum transmission measured through
each filter. The band numbers matching the maximum transmission datapoints are
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plotted as a function of their theoretical mirror separation and the resulting graph is
shown in Figure 7.1 (D). A third order polynomium is used to determine the relation
between the observed band number and the true mirror separation which is added as
a dashed red line in the graph. A third order polynomium is used since it follows the
expected displacement profile of an open loop forward scanned piezo element.
Using the calibrated mirror separation axis, the wavelength axis of the hyperspectral
datacube can be found by cross comparing to the simulated results from the transfer
matrix method. This will, however, not be done in the following sections, since the
second half of the second order peak transmission is contaminated by the transmission
of the third order peak as mentioned earlier. It is, therefore, not possible to label the
bands with a single transmitted wavelength in this region.
Two datasets were acquired, and they cover the temperature range of 27.1-97.0 °C.
Both dataset consist of HSTI acquired at temperatures covering most of the temper-
ature range, and the specific HSTI grabbing temperatures, c.f. Table 7.1. The first
dataset, named the training set, is used for fitting a Multinomial Logistic Regression
Classifier and a Partial Least Squares model, which is used in order to predict the
surface temperature of the samples in the HSTI. The other dataset, named the evalua-
tion set, is used for evaluating the performance of both statistical models. An image
of the scene is shown in Figure 7.2 (A), where the position of each sample can be
deduced from the mask used for data analysis shown in Figure 7.2 (B). The material
mask shows regions marked by dashed red squares. These regions indicate double
layers of PI used for fixating the samples. The double layer PI was excluded from the
classification analysis in this experiment, but was used for tempereature calibration,
which is described later.
A 50x50 pixel bounding box is placed inside every sample c.f. Figure 7.2 (A). The
spectra within these boxes have initially been collectively mean centered and thus

50px box:
1

502

+50

Â
xi ,yj

L̄xi ,yj ,⇤ ,

where xi and yj equals the corner coordinate of the bounding box of size n = 50. The
spectra are plotted and shown in Figure 7.2 (C). For visualisation purposes, the AC,
FS, BSG, and S spectra have been offset from the main axis by 1.2, 2.4, 3.6, and 4.8. As
seen in Figure 7.2 (C) the sample spectra differ distinctively and the following results
will show that the spectra are recognisable on an individual pixel level in the various
samples.
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Figure 7.2: (A) Image of the substrates mounted on an aluminium heating block using
polyimide tape. The image is recorded at 96°C with a mirror separation of 7.9 µm.
(B) The material mask which is used to fit the logistic regression model for material
recognition. The dashed red boxes mark areas where double layers of polyimide tape
have been used to tape the samples to the block. These regions are not included in
the material recognition data analysis. (C) A selection of each material is indicated by
the coloured squares in (A) and their average spectra are plotted. The spectra have
been offset on the y-axis for visualization purposes. [1].

Training set T [°C] 27.1 32.0 36.5 43.3 49.9 59.0 67.2 74.8 83.7 92.3
Evaluation set T[°C] 30.2 34.0 40.0 46.7 54.5 63.0 70.4 79.6 88.3 97.0

Table 7.1: Temperatures in the center of the aluminum block during image acquisition
of the training data set and the evaluation data set. The two rows seperate the dataset
used for fitting the MLR and PLS models and for testing their performance.

7.1.2 Results and Discussion

The overall goal of these experiments was to predict the surface temperature of ma-
terials of unknown and differing emissivity within the same thermal image frame.
Our approach is to first recognise the imaged material on the individual pixel level
using the material specific thermal emission spectrum. Following the correct material
classification, the PLS regression model associated to the classified material is used to
predict the surface temperature based on the measured spectrum.
Figure 7.3 shows the prediction results following the application of the Multinomial
Logistic Regression function on the evaluation set fitted. The MLR function was
fitted on the training dataset. Figures 7.3 (A), (B) and (C) show the predictions from
HSTIs collected at temperatures of 30, 34, and 97 °C, respectively, and the images are
reconstructions with color codes matching the predicted material by the MLR model.
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Figure 7.3: (A), (B), and (C) Predicted classes for HSTIs acquired at temperatures
of 30.2ºC, 34.0ºC and 97.0ºC using the testing set and applying the fitted logistic
regression classification model. The colour-coded materials follow that of Figure 7.2
(A). (D), (E), and (F) Normalised confusion matrices describing the relationship
between the true pixel material seen in the material mask in Figure 7.2 (B) and the
predictions of the MLR model. Each row is normalised to a sum of 1 such that the
diagonal represents the true positive predictions divided by the sum of true positives
and false negatives. S, BSG, FS, AC, and PI are abbreviations for the five materials:
sapphire, borosilicate glass, fused silica, alumina ceramic and polyimide tape. [1].
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The predictions shown in Figure 7.3 (A) are clearly affected by the low signal accom-
panying the aluminium block temperature, which impacts the signal to noise ratio.
The results are significantly improved by increasing the temperature to 34 °C as seen
in Figure 7.3 (B) which show a near perfect prediction of all five materials excluding
the double layered PI. The near perfect predictions are observed for all temperatures
up to 97 °C which is the highest temperature used in this experiment. The prediction
for this HSTI is shown in Figure 7.3 (C). In the corners of the image in this figure, the
effect of the spectral bending can be seen in the form of misclassification of the PI. The
predictions of the intermediate temperatures used in this experiment are included in
Appendix Figure A.9 and show near perfect predictions as well.
The prediction results are summarised in the confusion matrices, which have been
presented in Figure 7.3 where the dataset of (D), (E), and (F) match the predictions
in (A), (B), and (C). Confusion matrix (A) further shows that the main source of
error in the predictions of the 30 °C dataset is the misclassification of borosilicate
glass with alumina ceramic. This makes little sense given that the two materials are
different, however, the spectra measured in these two samples are very similar as
seen in Figure 7.2 (C). For the 34 °C dataset it is seen that the predictions all have
a true predictability rate above 94 %, and for the 97 °C dataset all predictions are
perfect. Note here that the predictions of the PI only include the region marked PI
in the image mask shown in Figure 7.2 (B). Therefore, the misclassification due to
the spectral bending in the corners of the image are not represented in the confusion
matrix. The overall conclusion of the material predictions remains that near perfect
predictions can be obtained at temperatures above 34 °C and therefore it is possible to
proceed with the overall goal of surface temperature predictions based on material
specific PLS temperature models. First, however, it is important to elaborate on the
measurements of the true surface temperature of each sample.

The thickness and materials of the samples differed, and the surface temperature of
each sample did not equal the reference temperature measured inside the aluminium
block. Consequently, a method for determining the true surface temperature of the
samples was needed. As stated, the samples were taped to the aluminium block
using PI, and therefore the PI was in direct contact with all sample surfaces. Since
the tape has a thickness of only 25 µm it is assumed that the temperature of the PI
is comparable and close to equal to the surface temperature of the samples. Thus,
the regions with PI taped directly to the sample surfaces were used to estimate the
sample surface temperature based on thermal imaging and a reference temperature
model for the PI itself. Such method is commonly used within thermography to
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improve temperature predictions of very low emissivity surfaces [73].
For this experiment a temperature model was constructed by conventional thermog-
raphy without the FPI in the optical path. An additional temperature dataseries
was made of the experimental setup consisting of single images from the camera at
eight different aluminium block temperatures. A linear fit was constructed of the
intensity measured of the PI directly taped to the aluminium block as a function of
the measured temperature in the center. The resulting linear fit was applied on the PI
taped directly on each sample to find their true surface temperature. Each linear fit is
shown in Figure A.8. The temperature model for the PI can be applied on the entire
image frame in order to check the resulting error of a measurement of the sample
surfaces without such calibration. These errors are presented in Table 7.2 and serve
the purpose of demonstrating the measuring error using non-calibrated conventional
thermography with a fixed emissivity. As can be seen the resulting errors can be of
substantial magnitude, and the biggest error is found for sapphire at 15 °C difference.
The just mentioned dataseries show the magnitude of the expected surface tempera-
ture deviances of the sample set, however, it cannot be applied to the acquired full
HSTI dataseries, since the measured intensities are heavily altered by the addition of
the FPI in the optical path. Thus, in order to validate the PLS predictions, a calibration
of the samples surfaces is needed for our main dataset as well, and a similar method
as the one presented above can be made. Thus a new PI temperature model must be
constructed, which can be carried out in various ways. Dealing with hyperspectral
images it is important to remember that PI with a thickness of 25 µm transmits in the
LWIR. The transmitting regions are located around 10-11 µm and 13-14 µm (measure-
ment using FTIR is shown in Figure A.7), and therefore it is important to choose a
spectral band with 0 % transmission for the PI temperature model. A spectral band
without transmission prevents that the radiance of the underlying sample influence
the model. Spectral band lk = 48 was chosen which corresponds to an MS of 6.01 µm
and a transmission center wavelength of 11.72 µm. A linear fit was then created of
the intensities measured in each individual HSTI in spectral band lk = 48. Note that
neither standardised nor mean centered spectra can be used for this purpose. The
standardised spectra cannot be used since they primarily contain material-specific
information and intensity variations are eliminated. The mean centered spectra cannot
be used due to several node points at the points where the spectra crosses the center
line equal to zero. An example of the mean centered spectra is shown in Figure 7.4
(A). The dashed line represents lk = 48 which lies close to a node of the spectra.
Therefore, baselined spectra were used where the intensity measured in every band
correlates with the temperature. The baselined spectra are shown in Figure 7.4 (B).
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Sample Polyimide Tape Alumina Ceramic Fused Silica Borosilicate Sapphire
Measurement [°C] 73.2 75.1 82.6 79.2 88.2

Error [°C] 0 1.9 9.4 6.0 15.0

Table 7.2: Measurement error of the sample surfaces of alumina ceramic, fused silica,
borosilicate and sapphire when using conventional thermography and an emissivity
setting that matches the polyimide tape. The measurement errors are found at a
polyimide temperature of 73.2 °C.

Figure 7.4: (A) A plot of the mean centered spectra. Several node points appear along
the spectral axis, and a linear fit in a single spectral band cannot be performed. (B)
A plot of the baselined spectra. The intensity in every band is correlated with the
temperature and thus the radiance transmitted through the FPI.

This procedure ensures a direct linear correlation between the temperature and the
spectral band intensity. The linear fit of the PI band intensity in lk = 48 was then
used in all images to determine the true surface temperature of the samples. The
resulting true surface sample temperature was used as an input to fit the PLS models
of the training set. Additionally, the true sample surface temperatures were used
to calculate the root mean square error (RMSE) of the PLS temperature predictions
of the evaluation set. During the PLS analysis all spectra were low-pass filtered, to
minimise readout noise.

Figure 7.5 shows the temperature predictions of the PLS models. Ten different
PLS models were fitted with 1-10 components. Each fitted model was used on the
evaluation dataset, and both the RMSE for each surface temperature material and
the combined RMSE for the entire dataset were found, c.f. Figure 7.5 (F). The overall
tendency for all five materials is a lower RMSE as the number of components increase.
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As is seen in Figure 7.5 (F) the local minimum of the RMSE is different for the five
different materials. For this reason, the RMSE of the combined dataset is used to
determine the number of components for the model used in the surface temperature
predictions. Assessing the RMSE for the combined dataset, it can be concluded that
if using six components the RMSE flattens, and if using ten components the RMSE
slightly increases due to overfitting. Therefore, the six component solution was chosen
for the surface temperature predictions in this experiment.
The six-component-PLS-model was fitted for each material using the training dataset.
Hereafter, the material-specific PLS model was used to predict the surface temperature
of the sample, based on the sample prediction from the previous logistic regression
function. The surface temperature predictions for each sample is shown in Figures 7.5
(A)-(E). In these figures, the green datapoints shown illustrate temperature predictions
of individual pixels in each image frame in the evaluation dataset. The individual
pixels have been sorted such that the temperature is ascending. The first pixel of
each sample is thus abbreviated sample # 0. The remaining pixels in each sample are
plotted as samples # 1,2,3... etc.. For each HSTI the cycle is repeated at the elevated
temperature which in the end makes up the stair case graph seen in Figures 7.5
(A)-(E). The orange line shows the temperature measured for each sample which is
assumed to be the true temperature. The root mean square error is thus calculated
as the error difference between the predicted temperatures and the true temperature.
As seen in Figure 7.5, all PLS models perform well with sapphire showing the best
temperature predictability with an RMSE of 0.77 °C and PI showing the worst RMSE
of 1.39 °C. Note that the temperature predictions of the borosilicate glass seem to
show a slope which increases with the rising temperature. This behaviour could be
the result of either reflections in the borosilicate glass from the camera itself or weak
adhesion to the PI covered aluminum block resulting in non-homogeneous heating.
A gradient in the material predictions of the borosilicate glass is observed in Figure
7.3 (A) as well which supports this hypothesis.

113



7.1. Surface Temperature Determination of Glass Types Using Hyperspectral
Thermal Imaging

Figure 7.5: Surface temperature predictions based on PLS models fitted on all the
HSTIs in the training set. The PLS models have been fitted to the spectrum of each
individual material marked by the mask in Figure 7.2 (B). Each individual figure
shows the pixelwise surface temperature predictions of every material present in the
image. The predictions have been sorted in order to match a stepwise increase in
temperature. The solid orange line, y, indicates the temperature measured, which is
considered the true temperature. The solid green line, ŷ, indicates the temperatures
predicted. (F) The root mean squared error (RMSE) of the entire set is shown in
every plot title and lastly the RMSE is plotted as a function of the PLS number of
components [1].
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7.2 Summary and Conclusion

To summarize the hyperspectral thermal imaging system was used to acquire HSTIs
at temperature covering the range 27.1-97.0 °C. The dataset was split in order to create
a training dataset and validation dataset for a MLR material classification model
and a PLS temperature prediction model. The MLR model was used to predict the
materials present in the evaluation dataset. The results showed TPR values above
94 % for all samples at temperatures of 34 °C and above. This shows that the emission
spectra of materials can be measured by a Fabry-Pérot-based hyperspectral camera
and that the spectra contain significant information at temperatures as low as 34 °C.
The hyperspectral imaging system was used to predict the surface temperature of the
samples present in the experimental setup based on sample specific PLS models.
The results shown in this chapter are extremely important in that they show that the
HSTC work as intended. The temperature calibration carried out using conventional
thermography reveals that a emissivity setting matching that of PI would lead to
misreadings of the temperature in the range 1.9-15 °C for the samples used in this
experiment. Using the HSTC the material specific temperature models predicted the
surface temperature with a common RMSE of 1.10 °C. The results demonstrate the
benefits of an advanced thermographic imaging system capable of determining the
surface temperature based on differentiable emissivity settings within an image frame.
Being able to use such imaging system for thermographic inspection could potentially
improve the analysis significantly. Reaching accurate material classifications and
temperature predictions of temperatures below 34.0 °C is the next step and the
thoughts and considerations for reaching this goal is presented in the outlook in
Chapter 9.
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8

Alternative Applications of
Hyperspectral Thermal Imaging

A few direct applications of the HSTC have been investigated throughout this project.
These include the detection of organic gasses and the segregation and sorting of
polymers based on hyperspectral imaging in the LWIR. Potential use-cases could
therefore be oil and gas facilities for the task of leak detection, and sorting facilities
specialising in polymer sorting which has become a major area within the last couple
of years.
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8.1 Detection of Organic Gasses Using Hyperspectral Thermal
Imaging

The following section presents results obtained from the HSTC where the absorption
spectra of the gas phase of a selection of chemical species was measured. Many
organic gasses have characteristic absorption lines in the thermal range detectable
by the HSTI camera[85, 73]. These absorption lines are primarily due to vibrational
secondly rotational modes of the specific gas molecule under investigation. Typically,
the rotational modes of molecules are lower energy and longer wavelength than
imaged by the HSTC.
The Telops Hyper-Cam LW has been used previously for the measurement of SO2,CH4,
H2S, and N2O gas plumes [86, 87]. Matching studies have shown that modified K-
means algorithms can be used to detect likewise gas plumes of O3 and CO2 based on
hyperspectral images acquired by an airborne imager [88]. Additionally the emission
of ammonia from land surfaces has been measured by the NASA developed HyTES
[89], and therefore measuring the transmission spectra of gas-phases is a natural
application for the FPI based HSTC as well.
This work was done in close collaboration with former master student Mads Nibe
Larsen and the final section in this experiment would not have made this thesis
without him.

8.1.1 Experimental Methods

The experimental setup used during these experiments is sketched in Figure 8.1. The
hyperspectral thermal imager was placed in front of a commercial blackbody source
(Newport CS1050-100) with a cavity diameter of 1 inch. The blackbody temperature
is controlled using a PID controller and the temperature accuracy is ±0.25 °C and
e(l) = 0.97 � 0.99 . During this experiment the blackbody source was set to a
temperature of 100 °C and thereby acting as a illumination source. As the light is
emitted from the cavity it travels through the gas cell and is ultimately collected by
the camera. The gas cell consist of a cylindrical stainless steel container fitted with two
uncoated zinc selenide windows at each end of the steel cylinder. The zinc selenide
windows are used in order to allow thermal light from the blackbody through to
the camera. This constitutes a closed container in which gasses of different chemical
composition can be maintained.
Before acquiring each image the gas cell was evacuated using a vacuum pump
followed by letting a continuous flow of gas through the cell for some time before
closing the valve. This procedure was done in order to ensure that the entire volume of

118



8.1. Detection of Organic Gasses Using Hyperspectral Thermal Imaging

Figure 8.1: Experimental setup used during the test of a separation and clustering
of organic gasses based on their transmission spectrum. The hyperspectral thermal
camera was placed in front of a gas-cell containing different organic gasses. The
gas-cell is equipped with ZnSe windows in order to transmit thermal light and a
commercial blackbody was used as light source.

the gas cell was filled with the inlet gas. Four different organic gasses were examined
in this experiment in combination with a reference measurement where the gas cell
contained atmospheric air. The gasses used in this experiment are tetrafluoropropene,
ethylene, and NO. As the light travels through the gas cell the chemical species
present within the volume are vibrationally, and to some extent rotationally, excited
by the light at a specific energy. This energies is absorbed and will be imaged by
the camera as an absorption line. Additionally, an FTIR spectrum of each gas was
measured in a transmission configuration through the gas cell.
A hyperspectral thermal image was acquired for each individual gas resulting in five
images in total.

8.1.2 Results and Discussion

Each individual HSTI was cropped to fit a size equal to the 1 inch cavity of the
blackbody source and the spectral axis was cropped to the length of the shortest one.
This results in five datacubes (4 compounds and one reference) of sizes 300x300 pixels
x 135 spectral bands. All five datacubes were used to construct a single datacube by
fusing the five cubes into a new datacube of size 1500x300 pixels x 135 spectral bands,
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resulting in the preprocessing

L1024,768,l ⇥ 5
Preprocessing
========) L1500,300,135 .

This datacube was used for data analysis which is presented in the following section.
The mean spectra of each gas cell is found for the circular aperture in which the emit-
ted light from the blackbody source can transmit. These spectra have been extracted
for all five gasses and plotted in Figures 8.2. Figure 8.2 (A) shows the measured
spectra following a mean centering and Figure 8.2 (B) shows the spectra following
standardisation. Figure 8.2 (C) shows transmission FTIR measurements through the
gas cell. The FTIR measurements in (C) show that few to none absorption lines are
present in the Methane, NO and air filled gas cell. The transmission percentage of
each gas is, however, different where the methane show transmission above 60 %. The
air filled gas cell show transmission directly below 40 % and the NO filled gas cell
show a transmission percentage around 40 %. Both the ethylene filled gas cell and
tetrafluoropropene gas cell show characteristic absorption lines.
It has previously been argued that the standardisation removes intensity variations
in the hyperspectral datacube leaving pure material specific features within the mea-
sured spectrum. This can be beneficial in the recognition of material spectra, however,
at times the intensity variation are needed. That becomes clear in this experiment
where the transmission percentage of the compounds are different while the spectral
features are not. The NO, methane, and air measurements are only distinguished by
their transmission percentage through the gas cell, which leaves only the transmission
variations to be measured by the HSTC in the form of intensity. These variations are
seen most clearly in Figure 8.2 (A) where the spectra have been mean centered. The
methane measurement has much higher variance in the spectral axis compared to NO
and air. Standardising the spectra as shown in Figure 8.2 (B) eliminates these differ-
ences and the measurements of all three spectra merge into a single indistinguishable
graph.
Comparing the FTIR measurements in Figure 8.2 (C) with the measured spectra in
(A) and (B) it is seen that the strong absorption line in the 9.8-11.8 µm observed for
ethylene is measured at mirror separations of 5.2 µm and around 10.5 µm using the
HSTC. The same thing is observed for the tetrafluoropropene where large absorp-
tion dips are observed in the ranges 8-9.5 µm, 10.8-12.1 µm, and 14-15.5 µm. The
segregation of the individual spectra can be performed by the combination of a PCA
and K-means analysis. Figure 8.3 shows the results from a PCA of the fused image
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Figure 8.2: (A) Mean centered spectra of the five gas cells used in this experiment.
The spectra have been measured using the HSTC. (B) Standardised spectra of the five
gas cells used in this experiment. The spectra have been measured using the HSTC.
(C) FTIR spectra measured through the five gas cells used in this experiment. The
spectra have been measured using a Shimadzu FTIR-8400S.

following both preprocessing procedures. Looking at the first principal component it
is immediately clear that tetrafluoropropene and ethylene are easily distinguishable
from NO, methane, and the air cell with no absorption. Furthermore tetrafluoro-
propene and ethylene are mutually distinguishable. As expected the methane cell
is only distinguishable using the mean centering for preprocessing which is clear
observing PC1, PC2 and PC6 in Figures 8.3 (D), (E), and (F). The intensity variations
in the PCs are equal, and therefore hardly distinguishable. A K-means analysis can
be performed in order to segregate the gas cells based on the variations seen in the
PCA. Figures 8.4 (A) and (B) show the results of a K-means analysis of four and five
clusters, respectively. The amount of clusters has been chosen based on the sum of
squared error (SSE) analysis performed and shown in Figures 8.4 (C) and (D) where
the vertical black line indicate the chosen amount of clusters based on the flattening
of the error curve. As expected the mean centering preprocessing allow methane to
be distinguished from NO and air, while all three gasses are contained within the
same cluster in Figure 8.4 (B).
This experiment demonstrates the ease of segregating gasses based on measured
absorption spectra. This underline one use-case for the hyperspectral imaging system
in the form of leak detection. A wide variety of organic gasses is known to have
absorption lines in the long wave infrared region. A selection of compounds with
absorption lines in the range from 8-16 µm are chloroform, methanol, ethylene, freon,
SF6, carbon tetrachloride, ammonia, sulfur oxides, nitrogen dioxide, ozone and carbon
oxides [73]. Being able to recreate the FTIR spectra, shown in Figure 8.4 (C), from
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Figure 8.3: (A) first principal component of the mean centered fused image. (B)
second principal component of the mean centered fused image. (C) sixth principal
component of the mean centered fused image. (D) first principal component of the
standardised fused image. (E) second principal component of the standardised fused
image. (F) sixth principal component of the standardised fused image.

the measured HSTC spectra is work in progress and the following section elaborates
on the initial task of simulating the spectrum measured by the HSTC. The spectrum
measured can be constructed from what is known at this point based on the design
of the mirror coating, the resulting theoretical transmission of the FPI, the spectral
bending and the extent of absorption of light in its path between being emitted from
the object surface and absorbed in the microbolometer pixel.

A Note on the Camera System Transfer Function

It is of high relevance to establish the transfer function of the camera system, which
allows us to theoretically model the measured spectra of the HSTC based on any given
input. As briefly discussed in the introduction to chapter 1, the emitted spectrum of
any object is given by the blackbody distribution multiplied by the object emissivityR

B(l, T)e(l)dl. Thus, if we measure a spectral band, lk, based on pure emission
the transfer function multiplied by the radiance equals a single datapoint in the
hyperspectral thermal imaging datacube
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Figure 8.4: (A) The result of a four cluster K-means analysis of the mean centered
datacube. (B) The result of a five cluster K-means analysis of the standardised
datacube. (C) A K-means sum of squared errors plot of the mean centered datacube.
(D) A K-means sum of squared errors plot of the standardised datacube.

Lpx,py,lk = THSTC(l, MS, q(px, py))
Z

B(l, T)e(l)dl ,

where l is the wavelength of the light, MS is the FPI mirror separation and q is the
angle related to the spectral bending, and xi, yi, lk are entries in the HSTI datacube,
L. While the exact transfer function remains unknown at this point, it is possible
to decompose the transfer function into a set of separate contributions based on the
working principle of the camera. For example, it is known that each image frame only
captures the light within the sensor sensitivity, and that the light reaching the sensor
is limited by the FPI. It is also known that the light passes through the collecting lens,
and that the spectral bending modifies the measurement, and thus

THSTC = TFPI(MS, l)Ssensor(l)Tlens(l)Clcorr (q(px, py))Cunknown(s) , (8.1)

where TFPI is the transmission of the FPI, Ssensor is the sensor sensitivity, Tlens is the
transmission of the lens, Clcorr is a correction factor for the spectral bending, and
Cunknown contains the remaining factors of s variables that still can be discovered.
Finding these parameters is work in progress, however, a simplified equation system
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Figure 8.5: (A) Combined transfer function variables found by minimising equation
8.3, resulting in the marked variables shown in equation 8.3. (B)-(D) Simulated and
measured spectrum of the gas cell filled with air, tetrafluoropropene, and ethylene,
respectively. The dashed line shows the simulated spectrum, and the solid line shows
the spectrum measured by the HSTC.

can be constructed based on the facts known at the time of writing. Focusing on
a single spectrum in the full hyperspectral datacube the equation system can be
described as

THSTC · Be = Lxi ,yj ,⇤ , (8.2)

with THSTC being the matrix representation of the collective transfer function for
the hyperspectral camera. Be is the column vector representing the input of the
camera given by the spectral radiance and Lxi ,yj ,⇤ is the column vector representing
the measured output spectrum of the camera. Using the HSTI acquired in the gas
cell transmission experiment as an example Lxi ,yj ,⇤ would be an 135x1 vector, and
therefore THSTC would be limited to a size of 135xn. The 135 rows are given by the
transmission spectra calculated at the MSs at the time of image acquisition multiplied
by the n remaining transfer function variables. Be is an nx1 matrix consisting of the n
individual wavelength dependent inputs. Setting n = 135 would create a system of
equations that could potentially be solved analytically, however, doing so reduces the
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rank of the THSTC leaving the square matrix with linearly dependent rows. Setting
n > 135 creates an underdetermined system from the beginning, but such a system
can be numerically solved. The numerical solutions to this problem can be many,
but given the right constrains a physically meaningful solution can be found. A
minimisation problem can be constructed where the variables of the THSTC matrix
are found based on a known set of Be inputs. In this experiment the input is well
described by the measured FTIR spectra and the blackbody emission. Simplifying
equation 8.1 by choosing the center of the image frame it is reduced to

THSTC = TFPI(MS, l)

Figure 8.5 (A)z }| {
Ssensor(l)Tlens(l)Cunknown(s) . (8.3)

Such minimisation has been carried out by former master student Mads Nibe Larsen
resulting in the graph shown in Figure 8.5 (A). This graph resembles the sensor
sensitivity curve shown in Chapter 4 and the fall in intensity above 12 µm is most
likely caused by the antireflective coating on the collecting optics which is designed
for the range 8-12 µm. Having a reasonable matrix representation for the transfer
function it is possible to calculate simulated spectra, given that the input is known.
In this section, the input is approximated by the radiance multiplied by the FTIR
spectrum measured through the gas cell. The tetrafluoropropene, ethylene and air
spectra were chosen out due to their individual spectral differences and all three
are plotted again in Figure 8.5 (B), (C), and (D) along with their theoretical HSTC
spectrum. The simulated graph results from the calculation of THSTC · Be. Based
on Figure 8.5 (B), (C), and (D) it is concluded that the measured spectra can be
constructed to a high accuracy. Some deviations remain, and a refinement can be
done by improving the minimisation of the unknown variables of the transfer function
and including the substrate bending of the FPI mirrors, and the mirror absorption in
the simulation of the FPI transmission.

8.1.3 Summary and Conclusion

To summarise, this chapter contains the results and analysis following the acquisition
of HSTIs containing absorption transmission spectra from organic gas atmospheres.
The absorption lines of organic gasses are measurable with high accuracy using the
HSTC and a K-means analysis of the PCA containing several different gas atmospheres
is sufficient for segregating the gasses with absorption lines within the measuring
range. The transmission spectra were used in combination with measured FTIR
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spectra to test our understanding of the system transfer function. The transfer
function is used to calculate the theoretical spectrum measured by the HSTC based
on the measured FTIR spectra with decent accuracy. These studies lay the foundation
for a pathway to calculating an accurate wavelength spectrum. Having a perfect
transfer function matrix, it would be possible to develop methods for reconstructing
the camera input purely based on the measured output, which is of highest relevance
for a temperature emissivity separation algorithm. Attempts on developing such
algorithms has been carried out before through the analysis of hyperspectral thermal
data acquired from satellites and airplanes [90, 91, 92].
The results presented in the section above are not only an important step towards a
full understanding of the HSTC but also shows a direct application of the camera.
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8.2 Detection of Polymers using Hyperspectral Thermal Imaging

Hyperspectral imaging in the visible region of the electromagnetic spectrum is an
emerging technique, and one of the most promising application areas is the field of
polymer sorting. Earlier studies have shown that a wide range of polymers can be
sorted using hyperspectral imaging and that some of these polymers show spectral
differences in the 8-12 µm range [93]. While hyperspectral imaging already plays a
significant role in the sorting industry, it is expected to continue along this path the
coming years [94].
Therefore, an experiment was set up in order to investigate the possibility of seg-
regating polymers with a goal of polymer sorting based on hyperspectral thermal
imaging.

8.2.1 Experimental Methods

The camera was placed in front of a 16 cm x 16 cm aluminium block of 5 cm thickness.
The aluminium block was covered in polyimide tape in order to increase the emissivity
of the surface. Another piece of polyimide tape was fixed onto the aluminium block
with the adhesive side facing outwards. Polymer granules were flattened and stuck
onto the surface. A sketch of the experimental setup is shown in Figure 8.6. Prior
to image acquisition a laboratory hotplate was used as a heatsource and placed at a
fixed distance behind the aluminium block acting as a heat reservoir. The temperature
of the aluminium block was measured and kept at 100 °C.

Polypropylene (PP), Polyethylene (PE), Polyethylene terephthalate (PET), akrylonitril-
butadien-styren (ABS), and polymethylmethacrylat (PMMA) were the five polymers
investigated in this experiment. Samples of all five polymers in neutral colour were
used while ABS and PMMA both were investigated in variants with colour pigments
added. The PMMA samples were larger tiles with various pigments added, and the
ABS samples consisted of smaller granule pieces of different colour LEGO-blocks. All
polymer samples were arranged as shown in Figure 8.7 (A) which shows the imaging
mask used for the spectral data analysis. The figure shows that each polymer type
was arranged in smaller clusters containing five individual granules except for the
five PMMA plates. The four center ABS clusters contain colour pigments marked
by light green (LG), blue (B), orange (O), and dark green (G). The remaining four
clusters to the right were all of neutral colour (n). Figure 8.7 (A) shows a region
marked polyimide tape (PI), which is used for the spectral analysis, which we will
get back to. Lastly, it should be noted that the background material, polyimide, is a
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Figure 8.6: (A) Experimental setup used during image acquisition of polymer granules.
The hyperspectral camera was placed in front of the experimental setup. polymer
granules were stuck on the adhesive side of a 200x200 mm piece of polyimide tape.
The polyimide tape was subsequently fastened to a 160x160 mm aluminium block,
which was heated by a heatsource.

polymer as well.
The camera was configured to a gain of 4x and a GFID voltage on the sensor of
2800 mV. A single HSTI was acquired with 146 spectral bands. The HSTI was
subsequently standardised and cropped to only fit the aluminium block within the
image frame and remove most of the spectral bending. Thus the datastructure for
this experiment was

L1024,768,146
Preprocessing
========) L0600,650,146 .

The polymer samples for this experiment were kindly provided by Mogens Hinge and
Martin Lahn Henriksen from the plastic and polymer engineering group at Aarhus
University.

8.2.2 Results and Discussion

The initial data analysis of the HSTI acquired in this experiment showed very few
spectral features, and therefore an additional preprocessing step was employed. All
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spectra were baselined followed by a division of the mean PI spectrum found in the
region marked PI in Figure 8.7 (A) and thus the spectra shown in Figure 8.7 (B)-(D)
are calculated as

Relative sample spectrum:
L0⇤,⇤,⇤ �L0⇤,⇤,lk=0

L0xi=PI,yj=PI,⇤ �L0xi=PI,yj=PI,lk=0

.

The baselining prior to division is important due to the nodes around zero mentioned
previously in Chapter 7. The additional preprocessing step enhances the spectral
differences between the PI background and the polymers used in this experiment. The
standardised mean spectra measured from the image position equal to each polymer
type has been calculated based on the additional preprocessing step. The resulting
spectra have been shown in Figures 8.7 (B), (C), and (D). The spectra have been
divided into three different plot windows for visualisation purposes, and therefore
the axis labels are common for all. Figure 8.7 (B) shows the pre-processed spectra of
the four polymer clusters PP, ABS, PE, and PET. The PI background has been plotted
as well to underline that the plotted spectra are relative differences to PI. The spectra
shows small but clear differences in the spectra of PP, PET, and the remaining two
polymers. The spectral differences between ABS (n) and PE are less clear however
small bumps are observed at the MSs slightly above 6 µm and 8 µm. The bump at
6 µm is observed again above 12 µm.
Figure 8.7 (C) shows the pre-processed spectra of the four polymer clusters of ABS
containing different colour pigments. Here, it is observed that the spectral signature
and shape are very similar. Spectral differences are, however, observed at MSs around
7 µm. Note that these differences correlate to the distance to the center of the image,
and thus may be caused by the spectral bending. The same trend is observed in
Figure 8.7 (D) where the dip in intensity at MSs around 7 µm becomes deeper as the
sample gets closer to the image center. Figure 8.7 (A) shows a red and white ’bulls
eye’ which mark the center of the original image and thereby the physical center of
the sensor.

A PCA was performed on the original standardised datacube. Figure 8.8 shows
the first twelve principal components sorted by the variance explained of the full
datacube from highest to lowest with PC1 explaining most of the variance. All twelve
principal components show distinct variations of intensity which indicate that a
multitude of effects is present in the image. All of these effects are thus measurable
by the hyperspectral thermal camera, ranging from material properties to differences
in transmission and reflections of the thermal light. Based on the twelve principal
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Figure 8.7: (A) Image showing the mask used for the polymer HSTI. (B) mean relative
spectra of the polymers shown in (A) marked PI, PP, ABS, PE and PET. (C) mean
relative spectra of the polymers shown in (A) marked PI and ABS LG, B, O, and G. (D)
mean relative spectra of the polymers marked PMMA 1, PMMA 2, PMMA 3, PMMA
4, and PMMA 5.

components it can be difficult to point out the exact reason why a specific component
stands out. However, it can be concluded that the component contributes specifically
with systematic variance to the original datacube. For example, the effect of spectral
bending, is most strongly observed in PC1 in image A as a radial shadowing effect
which is darkest in the center of image A and becomes brighter along the edge and
corners. This is the most dominating effect in PC1 which also reveals that the spectral
bending is one of the main contributors to the variance in the hyperspectral datacube,
which underline the observations from Figure 8.7. The polymer granules are all
barely visible and effectively indistinguishable. The spectral bending effect is less
prominent in PC2 and all polymers stand out of the image more clearly, although a
slight radial effect is observed in the PMMA samples. The intensity variations between
the polymers is observed at higher order PCs which indicate that the polymers may
be sorted spectrally. In PC5 and PC10 the PET cluster stand out slightly from the
remaining neutral colour polymers. In PC6 the ABS polymer granules stand out from
the rest and appear darker than the remaining samples. In PC7, PC8 and PC9 the PP
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Figure 8.8: (A) through (L) shows the reconstructed images resulting from a PCA
of the standardised HSTI in this experiment. The twelve images are sorted, and
therefore PC1, which is the principal component with highest variance is shown
first. The images show the spectral bending in PC1 as well as significant variance
in the polyimide tape used for sample fixture. Aside from this, the images also
show differentiable intensity variations in the polymers imaged, which is used for the
analysis and classification.
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Figure 8.9: A selection of the principal components in Figure 8.8 has been shown.
Additionally, the hand picked principal components showing differences between the
groups of polymers have been selected. The principal components resulting from this
selection are PC2, PC5, PC6, PC7, PC8, PC9, and PC10.

sample stand out slightly from the remaining neutral colour polymers, and in PC10
the PE cluster stand out clearly from all other samples. In all images the intensity of
the PI tape background disturbs the image frame which may be due to reflections and
temperature differences since the tape was loosely tightened to the aluminium block
surface. As mentioned, PI is a polymer as well, and the spectra observed in Figure 8.7
(B), (C), and (D) indicate that the PI spectrum is different from all other polymers
used in the experiment. These spectral differences may be those observed in PC2 and
PC3 where the intensity of the background is close to homogeneous compared to the
higher order PCs. Thus, to conclude on the PCA it is very likely that some of the
intensity variances observed in the individual principal components arise from the
spectral differences of the polymers and a more detailed analysis can be carried out
based on this assumption.
A K-means analysis can be made based on the PCA components shown in Figure 8.8.

For this analysis we focus on the four polymers PP, ABS, PE, and PET which appear
to stand out individually in the PCs from the image acquired in this experiment as
mentioned. The principal components selected for the following analysis are therefore
PC2, PC5, PC6, PC7, PC8, PC9, and PC10 and a zoom in of these PCs in the region of
interest is shown in Figure 8.9. Following this selection of principal components a
K-means analysis was performed containing two clusters which effectively separates
the four groups of polymers from the PI background. The effectiveness of this method
is mainly assigned to PC2 which clearly separates the polymer granules from the poly-
imide tape background as seen in Figure 8.9. For the higher order PCs the background
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is disturbing, and therefore the cluster containing the background was then used to
remove all variance in the remaining PCs by assigning the background a value of zero.
Following this a K-means analysis containing five clusters was performed on all PCs
shown in Figure 8.9 which allow the clusters and background to be contained with one
cluster each. The result of the analysis is shown in Figure 8.10 where the new clusters
have been shown collectively and individually. This analysis shows a very decent
separation of the polymers where only the PE, and to a lesser extent ABS, is clustered
along with the edge of the remaining polymers. The polymer segregation carried out
in this experiment shows promising early stage results, and these experiments could
continue with the addition of polyvinyl chloride (PVC), polyoxymethylene (POM),
polytetrafluoroethylene (PTFE) and polycarbonate. Previous studies report significant
spectral features in the range 8-12 µm for these polymers as well [93]. The sorting
of PVC is generally of high importance due to the byproducts from the process of
PVC combustion [95]. The toxic byproducts from these processes are mainly HCl and
benzene. The results presented above are early stage, and more images should be
acquired to improve the statistical foundation. Furthermore, the multivariate case
of the PLS model may be used to solve this problem based on a large dataset of
different spectra with known solutions. The results show that the spectral bending is
a persisting problem which highly affects the results obtained, and this factor may not
be described by the PLS model. A few solutions to the spectral bending is discussed
in the outlook in the following chapter.

8.2.3 Summary and Conclusion

It is concluded that the emission spectrum of the polymers PP, ABS, PE, and PET
heated to 100 °C may contain sufficient spectral features in the thermal range, to be
segregated individually. It is furthermore concluded that the spectral differences in
ABS and PMMA polymer samples based on added colour pigments were too small to
be measured in the thermal range.
Inclusion of hyperspectral thermal imaging for polymer sorting could be beneficial for
the overall performance of such sorting facility. It should be mentioned that polymer
sorting in the visible and near infrared range is very robust at room temperature but
the illumination and reflections arising from light sources can be substantial which
impacts the classification negatively. As we have seen, hyperspectral thermal imaging
is not free from the disturbance of reflections but the reflections and artefacts seen in
the thermal range are not necessarily correlated with those in the visible and near
infrared. Therefore, the two techniques could be combined to support each other.
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Figure 8.10: Results from a K-means analysis of a selected region of the HSTI contain-
ing four groups of polymers. Each group has five polymer granules, and the groups
contain PP, ABS, PE, and PET sorted from top to bottom. The background has been
set to zero and a K-means analysis with five clusters have been performed on PCA
components 1, 5, 6, 7, 8, 9, and 10 shown in Figure 8.8. The initial image shows all
five clusters colour coded, and the remaining images show the individual K-means
clusters apart from the background containing cluster.

Although heating the polymers may be inefficient to reach the desired signal to noise
in a sorting facility, the technique could be applied as a pre-check in combustion
facilities where high temperatures are naturally occurring.
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9

Summary and Outlook

This chapter present a summary of the main results presented in this thesis. The
summary is finalised with a conclusion summarising the key findings of the thesis
related to the original list of success criteria. Lastly, an outlook including ideas for
further studies and developments is included.
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9.1 Summary

Having written this thesis, and lived through most of it during the last three years, it
is now time to sum up the current state of the project and the results and findings
presented throughout this thesis. The main goal of the project was the development of
a hyperspectral thermal camera capable of producing hyperspectral thermal images
using a scanning first order FPI. Starting out the project a set of FPI mirrors were
available which were grown using BaF2 and Ge. These FPI mirrors were absorbing
a significant part of the light travelling through the interferometer, which strongly
affected the quality of the hyperspectral thermal datacube. Several images were pro-
duced using these FPI mirrors and a selected set of images was shown to demonstrate
the state of the HSTC at this point in time. It was concluded that the signal to noise
ratio at room temperature was too low for material identification and temperature
determination using these mirrors. However, a HSTI was acquired and analysed at
sample temperatures near 100 °C showing that samples of different materials could
be segregated and recognised using a PCA and a multinomial logistic regression
classification model. The HSTC acquired contained 70 bands.
PVD experiments were conducted in order to improve the FPI mirror coating. Test
depositions were carried out with the exchange of the low refractive index layer
material and more specifically BaF2, CeF3, BaF2/CaF2, and IRX. The crystallinity
and corrugation of the low refractive index layer was concluded to be lowest for the
commercial material Cirom-IRX, however, the intrinsic tensile stress in the film made
it impossible to grow thin films of the thicknesses required for the mirror coating.
Therefore, to this day the most successful mirror coating is achieved using a three
layer coating recipe of Ge/BaF2/Ge.
Following several test depositions it was concluded that the high refractive index
layer of Ge was the primary contributor of absorption in the mirror coating. This was
measured using standard transmission FTIR in combination with reflection configured
FTIR measurements. It was found that the absorption in the Ge layer was due to the
amorphous structure of the layer and the fact that no protective coating was deposited
onto the Ge.
Alongside the FPI mirror PVD experiments a search for commercially available FPI
mirrors was made. The company II-VI Incorporated agreed to produce the FPI mirrors
and chose to deposit a Ge/ThF4/Ge coating. These mirrors were measured to have
a mean absorption of < 1 % in the sensitivity range of the microbolometer sensor
and were therefore used during the final part of this PhD project. These FPI mirrors
ensures a much higher signal to noise ratio and allows for HSTIs to be acquired at
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temperatures near room temperature.
Using the low absorption II-VI mirrors HSTIs were produced of an experimental
setup containing Al2O3, Al2O3 ceramic, Fused Silica, and Borosilicate glass. All of
these materials have fingerprint emission spectra in the LWIR range and are therefore
suitable candidates for the goal of material recognition and temperature determina-
tion. These materials were recognised based on their specific standardised spectra
using a multinomial logistic regression model at temperatures as low as 30.0 °C where
the materials were recognised with an accuracy above 54 %. At 34 °C the material
recognition was above 94 %. Using the recognised material specific fingerprint spectra
the surface temperature was determined based on pre-fitted PLS models. These
models were capable of predicting the surface temperature with a RMSE accuracy of
1.1 °C.
Two different alternative applications of HSTI were tested out during the PhD in a
search for industrial use-cases of hyperspectral thermal imaging. The first was recog-
nition of organic gasses using HSTI. Here NO, CH4, tetrafluoroprone, and ethylene
were imaged through a zinc selenide gas cell. A PCA was made to distinguish the
different gasses with success, showing that the absorption spectra of gasses can be
measured with high accuracy. Each individual gas was succeedingly clustered using
the K-means algorithm. This study lays the foundation for a larger study searching
for the applicability of gas leakage detection in oil and gas facilities.
The second application was recognition and separation of heated polymer granules
using HSTI. This experiment shows a strong segregation of individual polymers, and
subsequent studies should follow.

Taking time to reflect on the initial success criteria of this project it can be stated
that a variable filter with a narrow peak in the range 8-14 µm was constructed. This
filter was based on thermal mirrors resulting in an effective bandpass of up to 80 %
and a full width at half maximum of 480-280 nm. The FPI mirrors were used in
combination to acquire hyperspectral thermal images of 140 spectral bands of various
co-dependence. Lastly, a pre-fitted material and temperature recognition model was
used to recognise materials of up to 100 % accuracy and determine the temperature
with a RMSE of 1.1 °C. This concludes that all success criteria have been met.

9.2 Outlook

Having reached this part of the thesis it is immediately clear that the most obvious
point of attack, in order to improve the hyperspectral thermal camera, is the spectral
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bending. Thus, the spectral bending will be the first of the following sections, which
describes the planned future work regarding the camera. For the reader, reaching
this part of the thesis it should be clear that the imaging system has a huge potential.
Therefore, the following section serves as inspiration anyone who will work with this
system.

9.2.1 Spectral Bending

The spectral bending measured in each individual pixel of the FPA is an important
factor to take into account during the further development of the hyperspectral
thermal imager. The most obvious workaround of the spectral bending feature is to
take the wavelength of each individual pixel on the FPA into account during model
fitting and prediction. It is possible to make a full calibration series where the logistic
regression functions are fitted relative to the center of the FPA. While the process is
tedious the radial dependency of the logistic regression models is a relatively simple
programmable solution.
Another possibility is to transform the data according to the spectral bending and
spline the datapoint in order to use the material recognition at the correct wavelength
bands. This is a more complex solution at the results based on such approach
have been inconclusive till this point. A major barrier for a pure mathematical
transformation may be the overlapping of wavelengths transmitted through the FPI,
which has been mentioned a few times throughout the thesis.

9.2.2 FPI Mirror Development

Several further studies could be carried out regarding the FPI mirrors in order to
determine the perfect mirror recipe. The FPI mirrors available at present time show
low absorption, however, the physical bending of the substrates, due to tensile film
stresses, broaden the transmission peak which essentially lowers the resolution of the
hyperspectral imaging system. Several creative solutions can be followed in order
to improve the substrate bending such as depositing a two-layer mirror coating or
conducting experiments with either pre-polished substrates which compensate the
bending effect or the deposition of anti-bending coatings on the backside of the mirror
substrate.
Additionally, it is of high importance to conduct experiments which investigate the
effect of a protective coating on top of the topmost germanium layer, in order to
prevent oxidation of the surface.
Lastly, in order to make the camera mobile, it is of high relevance to find a solution
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to the fastening of mirror substrates within the FPI, without substrate bending. This
will be a challenge, but it surely can be solved!

9.2.3 Integration of Spectrometers in the Mirror Control Software

The integration of mini-spectrometers on the QT5062 PCB would allow for an on-
camera calibration of the mirror substrate separation, which does not require a
bandpass filter. This would be a great addition to the HSTC. since the camera would
be able to check its own state.

9.2.4 Room Temperature Imaging

A few ideas can be tested out in order to improve room temperature measurements.
As seen in chapter 6 the addition of multiple hyperspectral thermal images is a
possible pathway to improving the signal to noise ratio. Thus, acquiring several HSTI
and meaning the intensity could be beneficial. The practical implementation of this
can be done through several pathways. The most efficient, but difficult task would be
to acquire images during the forward scan of the FPI as well as during the backwards
scan resulting in the acquisition of two datacubes. While this may appear simple
the implementation of such a functionality is more complex. This is primarily due
to the hysteresis curve of the piezo elements which is shown earlier in Figure 4.3 in
chapter 4. Having this hysteresis in the system means that the images grabbed during
the backwards scan will have very different mirror separation distances compared
to the forward scan. A circumvention of this problem is a complete control of the
image acquisition points as mentioned related to the inclusion of spectrometers on the
QT5062 PCB. The interferogram of the laser diodes should then be used to determine
the transmitted band and the images could then be added. The most difficult part
here is to acquire the images at the exact same wavelengths as during the forward
scan. Having spectrometers on the QT5062 PCB along with a two wavelength light
source would be highly beneficial along with the possibility of sending a triggering
signal for the image acquisition.

9.2.5 FPI distinct band selection

Having full control of the Fabry-Pérot interferometer and the transformation between
the measured mirror separation and the wavelength axis, it is possible to select one or
more specific wavelength bands which belong to certain absorption bands in any gas
or material. Keeping the FPI mirrors at these bands with a fixed mirror separation or
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jumping between several mirror separations, the choice of materials can be scanned
for at a faster rate than during a standard HSTI image acquisition event.

9.2.6 Temperature and Emissivity Separation Algorithms

Based on the results of transmission spectra of gas atmospheres presented in Chapter 8,
it is believed that the possibility of developing a temperature and emissivity separation
algorithm is within reach. The strong understanding of the camera transfer function
at this point in times sets a clear goal for the further development of algorithms.
Multivariate PLS models may be used to solve this problem, and this work is surely
in progress.

9.2.7 Battery Package Development

In order to make a fully assembled and integrated system a battery management
system is needed. This should be fully integrated in the camera, in order to bring
the imager to the field with ease. A simple battery solution was made as part of this
project, which allowed the camera to be tested in the field. A small description of
the battery system is included in Appendix A.2.2. This is a clear step in the direction
towards a true mobile camera.

9.2.8 RGB camera addition

The addition of an RGB camera on top of the thermal camera has been made already,
and the analysis of HSTIs in combination with RGB images is on the checklist for
future work. The addition of an RGB camera is done in order to test the ability of
adding even more information to the hyperspectral thermal imaging datacube.
A few studies has appeared during the last decade which combine the spatial in-
formation of a conventional image with the spectral information of a hyperspectral
image [96].

Now. This is the end of this PhD thesis, but as the reader may realise there is a
lot of remaining work to be carried out.
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A

Appendix

A.1 A First Order Scanning Fabry Pérot Interferometer

Figure A.1: (A) SEM image of a PVD deposition on ZnSe of 300 nm Ge / 875 nm IRX.
(B) SEM image of a PVD deposition on ZnSe of 300 nm Ge / 875 nm IRX.
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A.1. A First Order Scanning Fabry Pérot Interferometer

Figure A.2: (A) SEM image showing a cross-sectional analysis of the final ZnSe
| Ge/IRX/Ge film deposition. The structure shows major individual craks throughout
the IRX layer, affecting the final Ge layer as well. (B) SEM image showing a cross-
sectional analysis of the final ZnSe | Ge/IRX/Ge film deposition. The structure
shows major individual craks throughout the IRX layer, affecting the final Ge layer as
well.

Figure A.3: (A) Optical microscopy image of a CeF3 deposition at 90 °C using a
5 Å s�1 deposition rate. The image is acquired using a 20x objective. (B) Optical
microscopy image of a CeF3 deposition at 90 °C using a 100 Å s�1 deposition rate. The
image is acquired using a 20x objective. (C) SEM image of the coating mentioned in
(B).

A.1.1 FTIR Measurements of an FPI Assembly

The graph below show FTIR measurements through an FPI assembly. A constant
mirror seperation is kept between the mirrors during a scan. While the alignment of
the mirrors was unknown during measurment, the small spotsize of the FTIR ensures
that any slight misalignment has little impact on the width of the transmitted peak.
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A.1. A First Order Scanning Fabry Pérot Interferometer

Figure A.4: (A) FTIR measurements of an FPI assembly containing two homegrown
mirrors with a mirror recipe of ZnSe | Ge/BaF2/Ge. The transmitted intensity is
located around 50 % for wavelengths below 11 µm. At 11 µm the transmitted intensity
is around 40 %. These values can be reproduced theoretically cf. equation 2.8 and the
measured absorption found in Figure 3.2. (B) FTIR measurements of an FPI assembly
containing two II-VI Incorporated mirrors. The transmission percentage lies slightly
below 80 %. These values can be reproduced theoretically cf. equation 2.8 and the
measured absorption found in Figure 3.10.
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A.2. Development and Functionality of a Hyperspectral Thermal Imaging Prototype

A.2 Development and Functionality of a Hyperspectral Thermal
Imaging Prototype

A.2.1 Sensor Sensitivities at 1.25x Gain

A dataseries was made in order to quantify the temperature ranges observable by the
bolometer sensor. The experimental setup is shown in Figure A.5 where (A) shows
the raw output of the camera. Figure A.5 (B) show the background image of the
sensor which was acquired while blocking the sensor with a shutter, and (C) shows
the resulting image from a subtraction of (B) from (A). Figure A.5 (D) shows an RGB
image of the setup.
The data used for analysis includes background subtracted images as shown in Figure
A.5 (C). These images do not suffer from the permanent pixel offset characteristic of
the bolometer chip, and therefore more pixels contribute to the actual data analysis.
Note that a single point non-uniformity correction is used, which explain the rising
standard deviation in Figure A.6 (A). Figures A.6 (B) and (C) are derived from the
slopes of (A) and (C) show the resulting temperature span following the marked
GFID settings and an 1.25x sensor gain.

Figure A.5: (A) A raw image of the scene used for investigating the Pico 1024 GFID
setting. (B) A raw image of the non uniformity of the sensor, which has been grabbed
by inserting a shutter in front of the lens. (C) The resulting image when subtracting
the image shown in (B) from the image shown in (A). (C) An RGB image of the setup.
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Figure A.6: Measurements of the sensor setting GFID with a gain of 1.25. (A)
The mean intensity of the active area of a standard thermal image of a hotplate at
temperatures of 40, 50, 60, and 70 °C. (B) The slopes of the linearly regressed lines in
(A). The corresponding temperature range provided that 16-bit images are grabbed.

A.2.2 The Battery Package

In order to bring the hyperspectral thermal camera to the field, a lithium ion battery
package was made which fitted the camera. The battery package has a 7S2P config-
uration and consists of 18650 lithium ion battery cells. The specific cell used is an
ICR18650 Samsung cell with a charging voltage of 4.2 V and an energy capacity of
2600 mAh. Having 7 cells in series and two parallel rows the battery pack will hold
29.4 V at full charge with an energy capacity of 5.2 Ah. The charging voltage of 29.4
V lies within the tolerances of the QT5022 camera body and the battery package is
therefore perfectly capable of running the hyperspectral thermal camera. The battery
pacakage is made from a PCB assembly based on the design of Jehu Garcia1. Since the
battery pack is equipped with rechargeable lithium ion cells a battery management
system (BMS) is needed in order to protect the cells from both under voltage and over
voltage during charging. The BMS used in this system is a single 20 A system which
measures the voltage of each individual Li-ion cell. As the voltage drops the BMS
will turn off the current supplied by the battery pack.
During the final part of this PhD project the hyperspectral thermal camera was
brought out of the lab in order to acquire hyperspectral thermal images of the front
facing wall of Sorø Abbey church running on battery power. The image analysis has
been documented by Larsen[97].

1Available at: JAG35.com

v



A.2. Development and Functionality of a Hyperspectral Thermal Imaging Prototype

A.2.3 Absolute Distance Derivation

The distance between two completely flat mirror substrates is calculated as

lmm = 2nd cos(q) lm+1(m + 1) = 2nd cos(q)

m

m =
2nd cos(q)

lm
m + 1 =

2nd cos(q)
lm+1

m substituting for m

1 = 2nd cos(q)(
1

lm
� 1

lm+1
)

m

d =
1

2n cos(q)
lmlm+1

lm+1 � lm
. (A.1)

A.2.4 Ibsen Calibration Parameters

All spectrometers are calibrated using the following relation:

l = B0 + B1 pix + B2 pix2 + B3 pix3 + B4 pix4 + B5 pix5

This calibration is accounted for every spectrometer as shown in the alignment
application in.[reference] The calibration parameters for each FST-101 is shown in
Table A.1.

Serial number: 161393 Serial number: 161392 Serial number: 161391
Calibration: Calibration: Calibration:

B0: 5.14536E + 01 B0: 4.86887E + 01 B0: 4.81564E + 01
B1: 6.13356E� 01 B1: 6.24021E� 01 B1: 6.19383E� 01
B2: 6.27419E� 05 B2: 4.98578E� 05 B2: 6.43391E� 05
B3: 1.56729E� 08 B3: 2.36372E� 08 B3: 1.07503E� 08

B4: �2.10190E� 11 B4: �2.28991E� 11 B4: �1.87932E� 11

Table A.1: Table summarising the calibration parameters needed for a truw wave-
length reading on the three IBSEN VIS-NIR spectrometers used as part of the FPI
mirror alignment application.
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A.3 Hyperspectral Thermal Imaging using II-VI mirrors

A.3.1 Surface Temperature Determination of Glass Types Using
Hyperspectral Thermal Imaging - Additional Results

Figure A.7: Figure showing an FTIR measurement of the polyimide tape (PT) of 25 µm
thickness used during this project. The figure shows that the PT is not completely
opaque to the LWIR.

Figure A.8: A calibration dataseries is shown where the mean intensity of the area
covering the surfaces of each sample is plotted against their true temperature. The
true temperature was measured using polyimide tape as a reference. The graph
shows the errors arising from various emissivity settings within this experiment.
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Figure A.9: Prediction results based on the MLR function used for classifiyng materi-
als in Chapter 7. The images show the results of the 7 intermediate temperatures in
the dataset.
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Figure A.10: Confusion matrices calculated from the MLR predictions shown in
Figure A.9. The matrices show the results of the 7 intermediate temperatures in the
dataset related to Chapter 7.
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B

Python Scripts

B.1 Alignment application

Figure B.1: A blown up view of the alignment application window used for the
assembly of the FPI. The three graph windows show live measurements from the
IBSEN spectrometers. In the version shown here the application measures the minima
positions and calculate the absolute distance between the FPI mirrors based on these
positions for each individual spectrometer.
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B.1.1 FPI alignment app

This application builds on top of the main communication script FT4222.py provided
by Ibsen Photonics. The FT4222 script was slightly modified to improve overall speed
and spectrum acquisition time for the FPI alignment application.

import matplotlib

matplotlib . use ( "TkAgg" )
from matplotlib . backends . backend_tkagg import FigureCanvasTkAgg , NavigationToolbar2Tk

from matplotlib . figure import Figure

import matplotlib . animation as animation

from matplotlib import style

from controls . FT4222 import *
import threading

import time

import sys

from scipy . signal import find_peaks , argrelextrema

import numpy as np

import tkinter as tk

from tkinter import ttk

def check_number_of_devs ( var ) :
i f var :

tempvar = i n t ( len ( list_devices ( ) ) /4)
var . s e t ( "Number of spectrometers connected : %s " %tempvar )
i f tempvar == 3 :

re turn True

def thickness ( l1 , l2 , n , alfa ) :
re turn ( l1 *l2 ) /(2*n * ( l2−l1 ) *np . cos ( np . arcsin ( np . sin ( alfa ) /n ) ) ) /1000

def animate ( i ) :
prominence_min = 1000
prominence_max = None

xlim_min = 400
xlim_max = 1100
peak_distance = 10
peak_width = 5
baseline_height = 2000
refractive_index = 1
minimaorder = 10
minima = True

maxima = False

pullData = open ( " s t a t i c /spec0Data . t x t " , " r " )
dataList = pullData . read ( ) . split ( ' \n ' )
xList = [ ]
yList = [ ]
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f o r eachLine in dataList :
i f len ( eachLine ) > 1 :

x , y = eachLine . split ( ' , ' )
xList . append ( f l o a t ( x ) )
yList . append ( i n t ( y ) )

pullData . close ( )

meas = np . array ( yList ) [ 5 8 0 : 1 3 8 0 ]
wvls = np . array ( xList ) [ 5 8 0 : 1 3 8 0 ]

i f maxima :
peaks , _ = find_peaks ( meas , distance=peak_distance , height=baseline_height , width= -

peak_width , prominence=[prominence_min , prominence_max ] )
i f minima :

peaks = argrelextrema ( meas , np . less , order=minimaorder ) [ 0 ]
## Remove o u t l i e r s
peaks = [ peak f o r peak in peaks i f meas [ peak ] > 5000]

thicknessarr = [ ]
peak_wvls = wvls [ peaks ]
i f len ( peaks ) > 1 :

f o r i in range ( len ( peak_wvls ) −1) :
thicknessarr . append ( thickness ( peak_wvls [ i ] , peak_wvls [ i+1] , refractive_index -

, 0 . 0 0 1 ) )

thicknessarr = np . array ( thicknessarr ) [ ( thicknessarr < np . median ( thicknessarr ) + -
0 . 5 0 0 ) & ( thicknessarr > np . median ( thicknessarr ) − 0 . 5 0 0 ) ]

t=np . mean ( thicknessarr )
ts=np . std ( thicknessarr )
app . frames [ MeasurePage ] . spec0_std . s e t ( ' Standard devia t ion : ' + s t r ( round ( ts , 3 ) ) + -

' \mu m' )
app . frames [ MeasurePage ] . spec0_dist . s e t ( ' Cavity d i s t a n c e : ' + s t r ( round (t , 3 ) ) + '  -

\mu m' )

a1 . clear ( )
a1 . plot ( xList , yList )
a1 . plot ( wvls [ peaks ] , meas [ peaks ] , " kx " )
a1 . set_title ( ' Spectrometer 0 : ' )
a1 . set_xlabel ( " wavelength [nm] " )
a1 . set_ylabel ( " I n t e n s i t y [16 − b i t ] " )
a1 . set_xlim ( ( xlim_min , xlim_max ) )

pullData = open ( " s t a t i c /spec1Data . t x t " , " r " )
dataList = pullData . read ( ) . split ( ' \n ' )
xList = [ ]
yList = [ ]
f o r eachLine in dataList :

i f len ( eachLine ) > 1 :
x , y = eachLine . split ( ' , ' )
xList . append ( f l o a t ( x ) )
yList . append ( i n t ( y ) )
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pullData . close ( )

meas = np . array ( yList ) [ 5 8 0 : 1 3 8 0 ]
wvls = np . array ( xList ) [ 5 8 0 : 1 3 8 0 ]

i f maxima :
peaks , _ = find_peaks ( meas , distance=peak_distance , height=baseline_height , width= -

peak_width , prominence=[prominence_min , prominence_max ] )
i f minima :

peaks = argrelextrema ( meas , np . less , order=minimaorder ) [ 0 ]
peaks = [ peak f o r peak in peaks i f meas [ peak ] > 5000]

thicknessarr = [ ]
peak_wvls = wvls [ peaks ]
i f len ( peaks ) > 1 :

f o r i in range ( len ( peak_wvls ) −1) :
thicknessarr . append ( thickness ( peak_wvls [ i ] , peak_wvls [ i+1] , refractive_index -

, 0 . 0 0 1 ) )

thicknessarr = np . array ( thicknessarr ) [ ( thicknessarr < np . median ( thicknessarr ) + -
0 . 5 0 0 ) & ( thicknessarr > np . median ( thicknessarr ) − 0 . 5 0 0 ) ]

t=np . mean ( thicknessarr )
ts = np . std ( thicknessarr )
app . frames [ MeasurePage ] . spec1_std . s e t ( ' Standard devia t ion : ' + s t r ( round ( ts , 3 ) ) + -

' \mu m' )
app . frames [ MeasurePage ] . spec1_dist . s e t ( ' Cavity d i s t a n c e : ' + s t r ( round (t , 3 ) ) + '  -

\mu m' )

a2 . clear ( )
a2 . plot ( xList , yList )
a2 . plot ( wvls [ peaks ] , meas [ peaks ] , " kx " )
a2 . set_title ( ' Spectrometer 1 : ' )
a2 . set_xlabel ( " wavelength [nm] " )
a2 . set_ylabel ( " I n t e n s i t y [16 − b i t ] " )
a2 . set_xlim ( ( xlim_min , xlim_max ) )

pullData = open ( " s t a t i c /spec2Data . t x t " , " r " )
dataList = pullData . read ( ) . split ( ' \n ' )
xList = [ ]
yList = [ ]
f o r eachLine in dataList :

i f len ( eachLine ) > 1 :
x , y = eachLine . split ( ' , ' )
xList . append ( f l o a t ( x ) )
yList . append ( i n t ( y ) )

pullData . close ( )

meas = np . array ( yList ) [ 5 8 0 : 1 3 8 0 ]
wvls = np . array ( xList ) [ 5 8 0 : 1 3 8 0 ]

i f maxima :
peaks , _ = find_peaks ( meas , distance=peak_distance , height=baseline_height , width= -

peak_width , prominence=[prominence_min , prominence_max ] )
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i f minima :
peaks = argrelextrema ( meas , np . less , order=minimaorder ) [ 0 ]
peaks = [ peak f o r peak in peaks i f meas [ peak ] > 5000]

thicknessarr = [ ]
peak_wvls = wvls [ peaks ]
i f len ( peaks ) > 1 :

f o r i in range ( len ( peak_wvls ) −1) :
thicknessarr . append ( thickness ( peak_wvls [ i ] , peak_wvls [ i+1] , refractive_index -

, 0 . 0 0 1 ) )

thicknessarr = np . array ( thicknessarr ) [ ( thicknessarr < np . median ( thicknessarr ) + -
0 . 5 0 0 ) & ( thicknessarr > np . median ( thicknessarr ) − 0 . 5 0 0 ) ]

t=np . mean ( thicknessarr )
ts=np . std ( thicknessarr )

app . frames [ MeasurePage ] . spec2_std . s e t ( ' Standard devia t ion : ' + s t r ( round ( ts , 3 ) ) + -
' \mu m' )

app . frames [ MeasurePage ] . spec2_dist . s e t ( ' Cavity d i s t a n c e : ' + s t r ( round (t , 3 ) ) + '  -
\mu m' )

a3 . clear ( )
a3 . plot ( xList , yList )
a3 . plot ( wvls [ peaks ] , meas [ peaks ] , " kx " )
a3 . set_title ( ' Spectrometer 2 : ' )
a3 . set_xlabel ( " wavelength [nm] " )
a3 . set_ylabel ( " I n t e n s i t y [16 − b i t ] " )
a3 . set_xlim ( ( xlim_min , xlim_max ) )

c l a s s SpecThread ( threading . Thread ) :
def __init__ ( self ) :

self . running = True

self . text_message = None

self . button3 = None

thread = threading . Thread ( target=self . setDevicestring )
thread . setDaemon ( True )
thread . start ( )

def setDevicestring ( self ) :
while self . running :

check = check_number_of_devs ( self . text_message )
i f check :

app . frames [ MeasurePage ] . init_spec ( )
self . button3 . invoke ( )

time . sleep ( 1 )
sys . exit ( )

c l a s s MeasureThread ( threading . Thread ) :
def __init__ ( self ) :

self . running = True

self . spec0 = None
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self . spec1 = None

self . spec2 = None

thread = threading . Thread ( target=self . thread_measuring )
thread . setDaemon ( True )
thread . start ( )

def thread_measuring ( self ) :
while self . running :

i f self . spec0 and self . spec1 and self . spec2 :
WriteSpectrum ( self . spec0 )
WriteSpectrum ( self . spec1 )
WriteSpectrum ( self . spec2 )

time . sleep ( 0 . 1 )
sys . exit ( )
self . running = False

c l a s s FPIapp ( tk . Tk ) :

def __init__ ( self , *args , * * kwargs ) :

tk . Tk . __init__ ( self , *args , * * kwargs )

tk . Tk . wm_title ( self , " FPI Alignment Appl icat ion " )

container = tk . Frame ( self )
container . pack ( side=" top " , fill=" both " , expand = True )
container . grid_rowconfigure ( 0 , weight=1)
container . grid_columnconfigure ( 0 , weight=1)

self . frames = { }

f o r F in ( StartPage , MeasurePage ) :

frame = F ( container , self )

self . frames [ F ] = frame

frame . grid ( row=0 , column=0 , sticky=" nsew " )

frame = self . frames [ StartPage ]
frame . tkraise ( )

def show_frame ( self , child , cont ) :

child . close ( )

frame = self . frames [ cont ]
frame . tkraise ( )

frame . start ( )

def close ( self ) :
re turn
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def open ( self ) :
re turn

c l a s s StartPage ( tk . Frame ) :

def __init__ ( self , parent , controller ) :

tk . Frame . __init__ ( self , parent )
label = tk . Label ( self , text=" S t a r t Page " , font=LARGE_FONT )
label . grid ( row=1 ,column=1 ,columnspan=2 ,pady=10 ,padx=10 ,sticky= ' ' )

self . button3 = ttk . Button ( self , text=" Graph Page " ,
command=lambda : controller . show_frame ( self , MeasurePage ) )

self . button3 . grid ( row=2 ,column=1 ,columnspan=2 ,ipadx=10 ,ipady=10 ,pady=10 ,padx -
=10)

# button = t t k . Button ( s e l f , t e x t =" I n i t i a t e devices " ,
# command=lambda : p r i n t ( ' Hello World ' ) )
# button . gr id ( row=2 , column =2 , ipadx =10 , ipady =10 ,pady=10 ,padx =10)

var = tk . StringVar ( )
label2 = tk . Message ( self , textvariable=var , relief=tk . RAISED )
var . s e t ( " S t a t u s :\ nWaiting f o r spectrometers to be connected and i n i t i a t e d " )
label2 . grid ( row=3 ,column=1 ,columnspan=2 ,ipadx=10 ,ipady=10 ,pady=10 ,padx=10)

self . var = tk . StringVar ( )
label3 = tk . Message ( self , textvariable=self . var , relief=tk . RAISED )
label3 . grid ( row=4 ,column=1 ,columnspan=2 ,ipadx=10 ,ipady=10 ,pady=10 ,padx=10)

self . rowconfigure ( 0 , weight=1)
self . rowconfigure ( 5 , weight=1)
self . columnconfigure ( 0 , weight=1)
self . columnconfigure ( 4 , weight=1)

self . t1 = SpecThread ( )
self . t1 . text_message = self . var
self . t1 . button3 = self . button3

def close ( self ) :
self . t1 . running = False

def start ( self ) :
self . t1 = SpecThread ( )
self . t1 . text_message = self . var
self . t1 . button3 = self . button3

c l a s s MeasurePage ( tk . Frame ) :
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def assign_calichars ( self , obj ) :
caliChars_391_352 = [ 4 . 8 1 5 6 4 E1 , 6 . 1 9 3 8 3 E−1 ,6 .43391E−5 ,1 .07503E−8 , −1.87932E−11]
caliChars_392_395 = [ 4 . 8 6 8 8 7 E1 , 6 . 2 4 0 2 1 E−1 ,4 .98578E−5 ,2 .36372E−8 , −2.28991E−11]
caliChars_393_374 = [ 5 . 1 4 5 3 6 E1 , 6 . 1 3 3 5 6 E−1 ,6 .27419E−5 ,1 .56729E−8 , −2.10190E−11]

i f obj . serialNumber == 3 5 2 :
obj . caliChars = caliChars_391_352

p r i n t ( " Loaded c a l i b r a t i o n parameters f o r spectrometer SN: 191391 ( 3 5 2 ) " )
e l i f obj . serialNumber == 3 9 5 :

obj . caliChars = caliChars_392_395

p r i n t ( " Loaded c a l i b r a t i o n parameters f o r spectrometer SN: 191392 ( 3 9 5 ) " )
e l i f obj . serialNumber == 3 7 4 :

obj . caliChars = caliChars_393_374

p r i n t ( " Loaded c a l i b r a t i o n parameters f o r spectrometer SN: 191393 ( 3 7 4 ) " )
e l s e :

p r i n t ( " C a l i b r a t i o n parameters could not be assigned . " )

def init_spec ( self ) :
self . spec0 = spectrometer ( ' tempname1 ' , 0 )
self . spec1 = spectrometer ( ' tempname2 ' , 1 )
self . spec2 = spectrometer ( ' tempname3 ' , 2 )

f o r spec in [ self . spec0 , self . spec1 , self . spec2 ] :
i f spec . serialNumber == 3 5 2 :

spec . name = ' spec0 '
e l i f spec . serialNumber == 3 9 5 :

spec . name = ' spec1 '
e l i f spec . serialNumber == 3 7 4 :

spec . name = ' spec2 '
p r i n t ( ' spec2 was assigned ' )

e l s e :
p r i n t ( " Spectrometer was not assigned to the c o r r e c t p o s i t i o n " )

self . assign_calichars ( self . spec0 )
self . assign_calichars ( self . spec1 )
self . assign_calichars ( self . spec2 )

self . spec_init = True

def measure ( self ) :
i f self . t1 :

# p r i n t ( s e l f . t 1 )
i f self . t1 . running == False :

p r i n t ( ' S t a r t i n g measureThread again ' )
self . t1 . __init__ ( )
self . t1 . spec0 = self . spec0
self . t1 . spec1 = self . spec1
self . t1 . spec2 = self . spec2

e l s e :
p r i n t ( ' thread already running ' )

e l s e :
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self . t1 = MeasureThread ( )
self . t1 . spec0 = self . spec0
self . t1 . spec1 = self . spec1
self . t1 . spec2 = self . spec2

def __init__ ( self , parent , controller ) :

self . t1 = None

self . spec0 = None

self . spec1 = None

self . spec2 = None

self . spec_init = None

tk . Frame . __init__ ( self , parent )

label = tk . Label ( self , text=" Spectrometer Measurement " , font=LARGE_FONT )
label . grid ( row=1 ,column=1 ,columnspan=3 ,pady=10 ,padx=10)

canvas = FigureCanvasTkAgg (f , self )
canvas . draw ( )
canvas . get_tk_widget ( ) . grid ( row=2 ,column=1 ,columnspan=3 ,pady=10 ,padx=10)

self . spec0_dist = tk . StringVar ( )
Spec1_distance = tk . Message ( self , textvariable=self . spec0_dist , relief=tk . -

RAISED , width=200)
Spec1_distance . grid ( row=3 ,column=1 ,pady=10 ,padx=50)

self . spec1_dist = tk . StringVar ( )
Spec2_distance = tk . Message ( self , textvariable=self . spec1_dist , relief=tk . -

RAISED , width=200)
Spec2_distance . grid ( row=3 ,column=2 ,pady=10 ,padx=50)

self . spec2_dist = tk . StringVar ( )
Spec3_distance = tk . Message ( self , textvariable=self . spec2_dist , relief=tk . -

RAISED , width=200)
Spec3_distance . grid ( row=3 ,column=3 ,pady=10 ,padx=50)

self . spec0_std = tk . StringVar ( )
Spec1_distance = tk . Message ( self , textvariable=self . spec0_std , relief=tk . RAISED -

, width=200)
Spec1_distance . grid ( row=4 ,column=1 ,pady=10 ,padx=50)

self . spec1_std = tk . StringVar ( )
Spec2_distance = tk . Message ( self , textvariable=self . spec1_std , relief=tk . RAISED -

, width=200)
Spec2_distance . grid ( row=4 ,column=2 ,pady=10 ,padx=50)

self . spec2_std = tk . StringVar ( )
Spec3_distance = tk . Message ( self , textvariable=self . spec2_std , relief=tk . RAISED -

, width=200)
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Spec3_distance . grid ( row=4 ,column=3 ,pady=10 ,padx=50)

button0 = ttk . Button ( self , text=" Stop measuring " , command=lambda : self . close ( ) )
button0 . grid ( row=5 ,column=3 ,pady=10 ,padx=10 )

button1 = ttk . Button ( self , text=" Back to Home" , command=lambda : controller . -
show_frame ( self , StartPage ) )

button1 . grid ( row=5 ,column=1 ,pady=10 ,padx=10)

button2 = ttk . Button ( self , text=" Begin measuring " , command=lambda : self . measure -
( ) )

button2 . grid ( row=5 ,column=2 ,pady=10 ,padx=10 )

self . rowconfigure ( 0 , weight=1)
self . rowconfigure ( 6 , weight=1)
self . columnconfigure ( 0 , weight=1)
self . columnconfigure ( 4 , weight=1)

def close ( self ) :
self . t1 . running = False

p r i n t ( ' Stopping measureThread ' )

def start ( self ) :
# s e l f . t 1 = SpecThread ( )
re turn

i f __name__ == " __main__ " :

LARGE_FONT= ( " Verdana " , 12)
style . use ( " ggplot " )

f = Figure ( figsize = ( 1 1 , 4 ) , dpi=100 ,tight_layout=True )

a1 = f . add_subplot ( 1 3 1 )
a2 = f . add_subplot ( 1 3 2 )
a3 = f . add_subplot ( 1 3 3 )

# an1 = AnimationThread ( args =[ a1 ] )
# an2 = AnimationThread ( args =[ a2 ] )
# an3 = AnimationThread ( args =[ a3 ] )

app = FPIapp ( )
app . geometry ( " 1280 x720 " )
ani = animation . FuncAnimation (f , animate , interval=500)
app . mainloop ( )
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Acquisition and Analysis of Hyperspectral
Thermal Images for Sample Segregation

Anders Løchte Jørgensen1,2 , Jakob Kjelstrup-Hansen1,
Bjarke Jensen2, Victor Petrunin2, Sune Fuglsang Fink2, and
Bjarke Jørgensen2

Abstract
This study presents the first results of a new type of hyperspectral imager in the long-wave thermal radiation range from
8.0 to 14.0mm which is simpler than readily available Fourier transform infrared spectroscopy-based imagers. Conventional
thermography images the thermal radiation from hot objects, but an accurate determination of temperature is hampered
by the often unknown emissivities of different materials present in the same image. This paper describes the setup and
development of a hyperspectral thermal camera based on a low-order scanning Fabry–Pérot interferometer acting as a
bandpass filter. A three-dimensional hyperspectral data cube (two spatial and one spectral dimension) was measured by
imaging a high-emissivity carbon nanotube-coated surface (Vantablack), black painted aluminum, borosilicate glass, Kapton
tape, and bare aluminum. A principal component analysis (PCA) of the hyperspectral thermal image clearly segregates the
individual samples. The most distinguishable sample from the PCA is the borosilicate Petri dish of which the Si–O–Si bond
in borosilicate glass was the most noticeable. Additionally, it was found that the relatively large 1024! 768! 70 data cube
can be reduced to a much smaller cube of size 1024! 768! 5 containing 92% of the variance in the original dataset. The
possibility of discriminating between the samples by their spectroscopic signature was tested using a logistic regression
classifier. The model was fitted to a chosen set of principal components obtained from a PCA of the original hyperspectral
data cube. The model was used to predict all pixels in the original data cube resulting in estimates with very high true
positive rate (TPR). The highest TPR was obtained for borosilicate glass with a value of 99% correctly predicted pixels. The
remaining TPRs were 94% for black painted aluminum, 81% for bare aluminum, 79% for Kapton tape, and 70% for
Vantablack. A standard thermographic image was acquired of the same objects where it was found that the samples
were mutually indistinguishable in this image. This shows that the hyperspectral thermal image contains sample charac-
teristics which are material related and therefore outperforms standard thermography in the amount of information
contained in an image.

Keyword
Hyperspectral imaging, HSI, hyperspectral thermal imaging, HSTI, active thermography, material recognition, logistic
regression, principal component analysis, PCA, Fabry -PÕrot interferometer, FPI
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Introduction

Hyperspectral imaging was formally invented by Alexander
Goetz as part of his work during the 1970s.1 Recently,
hyperspectral imaging has gained increased attention due
to its promising industrial applicability, e.g., control and
quality assurance within the food industry2 and remote
sensing in general.3–5 This work focuses on hyperspectral
imaging in the long-wave infrared (LWIR) region of the elec-
tromagnetic spectrum. The LWIR is typically considered
the ‘thermal’ range of the optical spectrum, typically defined

as 8.0–14.0 mm, since the majority of the emission from
objects at room temperature is within this range. This is
utilized in thermography where the thermal radiation is
captured and imaged. Thermography and thermal imaging
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in general have been very beneficial in surveillance and
detection of warm objects, however, when it comes to
remote sensing of surface temperatures, significant draw-
backs arise due to the varied emissivities of different mater-
ials which heavily alters the net thermal radiation emitted.
Without a well-calibrated camera, the temperature predict-
ability of a thermal image is gone. In this case, thermog-
raphy is reduced to being able to tell relative temperatures
of the same object. This is a considerable drawback of pas-
sive thermography which can only be overcome by the
development of new methods.6 Some workarounds have
led to a set of techniques where illumination of the
imaged object has been used to detect subtle characteris-
tics such as delamination and crack formations in surfaces.
These methods include lock-in thermography7 and flying
spot thermography,8 where the active illumination is
either modulated or raster scanned, respectively.

A hyperspectral thermal camera can provide a reso-
lution to the problems related to passive thermography
without introducing active illumination. The combination
of recent advances in micromachining and chip production
has led to significant improvements in imaging chips for the
thermal range. This has allowed us to design and build a
relatively cheap thermal camera capable of doing low-reso-
lution spectroscopy in the thermal range with high spatial
resolution. Such spectral information can be used to esti-
mate the emissivity of unknown materials and thereby
determine the surface temperature, based on Planck’s law
of radiation, with higher accuracy than with conventional
thermal cameras. An additional advantage of hyperspectral
thermal imaging compared to standard thermal imaging is
the possibility of identifying and classifying materials based
on their spectral fingerprint. This opportunity benefits ther-
mographers and companies making thermographic inspec-
tions of the insulation in houses since reflections and
disadvantageous weather significantly complicate the ana-
lysis of these images. Currently the insulation quality of
constructions can only be assessed relatively, meaning
that faulty constructions can be found but the important
information about where most heat is lost is not available.
Hyperspectral thermal cameras also have applications
within defense and strategy,9 where detection of thermal
radiance from camouflaged targets is beneficial.10,11 Other
industries which might benefit from a low-cost hyperspec-
tral thermal camera include production companies that
generate environmentally damaging gases as by-products,
since many of these have strong absorption bands in the
thermal range.12 Here, surveillance of the production facil-
ity could detect leaks and gas plumes.13,14 Fourier trans-
form (FT)-based thermal-range imagers have proven useful
in medicine within quality assurance15 and pathogen detec-
tion.16 A different type of hyperspectral thermal cameras
has been used to examine the mineral constitution of
stretches of land.17 These studies, carried out by NASA,
rely on quantum well infrared photodetectors coupled with

a thermal spectrometer. The entire setup is mounted on
airplanes in order to examine land and the pixel resolution
is therefore in the square meter range (HyTES). Another
recent project by NASA uses a hyperspectral imager based
on a spectrometer in a satellite designed for remote sensing
of vegetation (HyspIRI).5

The relevance and applicability of a hyperspectral ther-
mal camera is significant; however, existing commercial
solutions are scarce. These include the Telops Hypercam
LW,18 which is a FT spectrograph functioning in the 7.7–
11.8 mm range, and the Specim LWIR HS or OWL19 with
uncooled and cooled detectors, respectively, are both
push-broom cameras. The work reported in this paper
focuses on the development of a relatively cheap, handheld
camera ready to bring to the field, which differentiates our
camera from previous research and commercial solutions.

In this study, a hyperspectral thermal camera based on a
scanning Fabry–Pérot interferometer (FPI) has been devel-
oped and characterized by imaging samples of different
materials. The images acquired have been analyzed and
standard statistical classification algorithms have been
applied to distinguish individual samples of different mater-
ials within a single image based on the spectrum observed
in the individual pixels. A design of this type has been pro-
posed earlier20 and previous devices include an FPI-based
hyperspectral camera taking images in the visible range,21

however, to our knowledge, this is the first time an FPI-
based hyperspectral imager covering the LWIR wavelengths
has been demonstrated.

Materials and Methods

Hyperspectral Thermal Camera

The design is based on a plane-scanning FPI and the Lynred
Pico 1024 Gen2 sensor, which is a state-of-the-art bolom-
eter chip with 1024! 768 pixel resolution. The chip has a
constant sensitivity in the thermal range from 8 to 14 mm
with gradual descents to zero outside this range. The bol-
ometer chip was mounted in a QTechnology QT5022
camera, and an Ophir 35 mm f/1 objective consisting of
two germanium lenses was used to focus the thermal radi-
ation onto the focal plane array (FPA). An image grabbing
event requires 33 ms, which gives a framerate of "30 Hz
with an integration time of the analog pixel output of 42 ms.

An FPI was placed in the afocal region of the radiation in
front of the objective to function as a filter for the inci-
dent thermal radiation. A sketch of the setup can be seen in
Fig. 1a.

The FPI was constructed from two semi-reflecting mir-
rors produced in-house. These mirrors were Ø 5.08 cm
(2 in.) and 5 mm thick ZnSe substrates with a Ø 40 mm
thermally reflective coating on one side. The thermally
reflective coating transmits "15% of the radiation in the
8.0–14.0 mm range. During assembly in a steel flange, the
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mirrors were positioned mutually parallel with a separation
distance of 4 mm. This constitutes a bandpass filter with a
peak transmission of "55% and a full width at half-maxi-
mum (FWHM) of less than 440 nm. The total attenuation of
the FPI was measured to 95% by numerically integrating the
through FPI transmission in the 8.0–14.0 mm range mea-
sured using standard Fourier transform infrared (FT-IR)
spectroscopy. With this mirror separation distance, the
FPI functions in the first-order configuration for the
LWIR. Three piezoelectric actuators, mounted on the rim
of the steel flange holding the mirrors, were used to align
the mirrors and to vary the mirror separation distance in
order to scan the bandpass wavelength. The FWHM of the
transmission profile of the FPI changes throughout the
wavelength range from "440 nm at a center wavelength
of 8.4 mm (first-order transmission) to "290 nm at the
same center wavelength of 8.4 mm (second-order transmis-
sion). While the FPI was scanned, images were grabbed by
the thermal camera. Thus, the hyperspectral camera func-
tions as a plane-scanning camera and the hyperspectral data
cube is created sequentially one frame at a time as repre-
sented in Fig. 1b. The images are grabbed while the three
piezo legs are scanned, however, the time constant of grab-
bing an image is considerably lower than scanning the piezo,
and therefore the mirror can be considered as stationary.
The hyperspectral data cube therefore consists of single
static images throughout the mirror separation range.

While the FPI is scanned, three laser beams (640 nm
wavelength laser diodes) were incident on the edge of
the ZnSe substrate cavity and the back-reflected light inten-
sity was detected by photodiodes. The measured intensity
was modulated by constructive and destructive interfer-
ence of the light inside the cavity as the mirror separation
distance was scanned. This allowed us to check the mirror
spacing and ensure that the mirrors were parallel, which
prevents unnecessary bandwidth broadening. The

interference response measured by the photodiodes was
also used to calculate the wavelength of the imaged band on
the FPA. FPI movement was calibrated using a 10.34 mm
bandpass filter and a uniformly hot graybody. The exact
physical separation between the mirrors was calculated
by scanning the FPI and determining the two points with
maximum intensity transmitted through the FPI with the
bandpass filter in front. These two points correspond to
the first- and second-order transmission of light with the
bandpass filter wavelength. The correlation between these
points and the interference fringes was used to calculate
the wavelength of each individual band in the hyperspectral
thermal image (HSTI).

Samples

The imaged object consisted of an aluminum block of 5 cm
thickness and 16 cm height! 16 cm width onto which dif-
ferent samples were attached. The surface was covered
with several strips of standard 25 mm thick Kapton tape in
order to increase the emissivity. The aluminum block was
heated to 103 #C by a constant current heat plate placed a
short distance behind the block itself. After a waiting period
of several hours, the temperature of the entire block sta-
bilized to a precision of <0.1 #C checked by a digital therm-
ometer measuring inside a hole drilled into the aluminum
block. Heating the block ensures sufficient thermal radiance
from the samples in each band of the HSTI. Additionally, the
waiting period ensures that all samples remain at a constant
temperature throughout image grabbing, even though the
surface temperature of the individual samples might vary.
Three samples were attached to the front side of the
Kapton tape using silicone heat paste in order to get a
high thermal conductance as well as good attachment. A
40! 40! 3 mm sample of Vantablack22 is used as a black
body reference. This sample was produced by Surrey

Figure 1. (a) Illustration of the hyperspectral thermal camera based on a QTechnology QT5022 camera body and the Lynred Gen2
Pico1024 bolometer chip. The FPI is placed in front of the thermal lens and consists of two ZnSe substrates with a reflective coating on
top. The FPI filter is scanned by three piezo stacks, which all are connected to a microcontrolled custom PCB. The distance between the
parallel mirrors is monitored by a photodiode measuring the optical interference from a laser diode and the reflected light inside the
cavity of the uncoated region of the ZnSe substrates. A representation of the three-dimensional image stack is shown in (b). The image
width and height correspond to the pixel value of the sensor, and the depth gives the spectral axis. Ideally, the Planck curve would be
distributed along the spectral axis.
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Nanosystems and consists of an aluminum plate onto which
a covering layer of carbon nanotubes is grown. Each corner
of the aluminum plate is free from carbon nanotubes and
therefore consists of bare aluminum as can be seen in Fig.
2b. A 64! 54! 1 mm aluminum plate painted with regular
black paint and a Ø 60 mm Petri dish made from borosili-
cate glass were also attached to the Kapton tape as shown
in Fig. 2. The aluminum block with the samples was placed
at a distance of 45 cm from the front of the camera. The
short distance to the heated aluminum block has a small
effect on the temperature of the bolometer chip itself;
when the scene is changed, a new equilibrium temperature
is reached within seconds and therefore had no influence
on the measurement.

Image Pre-Processing

The data were analyzed using Python 3.7 and the OpenCV
and scikit-learn libraries for image processing, multivariate
statistics, and statistical classification algorithms. The data
contain 70 spectral bands within the wavelength interval cov-
ering the bolometer sensitivity as can be seen in Fig. 2c. The
spectrum in each pixel was normalized to a sum of two16 in
order to eliminate the most extreme intensity variations
caused by emissivity differences leaving mostly spectral differ-
ences. All images were handled and stored as 16-bit.

The FPI is continuously scanned from a physical separ-
ation of "4 mm to "7.5 mm, so the first-order transmission
of the filter is shifted from 8 to 15 mm, which corresponds
to the spectra indicated with first order in Fig. 2c. As the
FPI mirrors are scanned beyond 7.5mm, the first-order
transmission moves out of the sensitivity range of the bol-
ometer sensor, however, the second-order transmission
starts moving into the sensitivity range. Further scanning
of the mirrors up to "10 mm separation distance was then
used to acquire the spectrum in the wavelength range from
7.5 up to 10 mm as indicated by second order in Fig. 2c.

Each image suffers from a fixed background noise pat-
tern due to different offsets and radiance sensitivities of the
individual pixels on the bolometer sensor, which arose
during sensor manufacture. Therefore, a non-uniformity
correction (NUC) or flat field correction is calculated for
each pixel in order to eliminate these sensor artifacts. The
calculation of this NUC is standard for uncooled bolometer
arrays and functions as a one-time calibration where a
linear fit is found for each pixel from images of a uniform
graybody at a series of temperatures.23,24 In our calibration,
an aluminum block covered with Kapton tape functions as
the graybody. The calibration was performed by letting the
aluminum block fill the image plane whereafter 23 images
were sequentially captured at temperatures ranging from
19.3 to 95.6 #C. These images are used to find the correc-
tion parameters for the responsivity and offset for each
pixel. These correction parameters were subsequently
used on all raw images from the hyperspectral data cube.

The specific HSTI analyzed in this study was originally
1024! 768 pixels with 70 spectral bands. In order to sim-
plify the analysis, the background located outside the alu-
minum block is cropped out of the image plane leaving a
HSTI of 660! 640 pixels with 70 spectral bands. Only
cropped images are shown in all the figures in this paper.

Results and Discussion

A standard thermal image, shown in Fig. 2a, was taken
alongside the HSTI in order to compare the two methods.
Comparison of the thermal image presented in Fig. 2a and
the sketch of where the samples are positioned in Fig. 2b
shows that the contours of the different samples are rela-
tively easily distinguished. The least noticeable difference
lies between the Vantablack surface and the Kapton tape
background. Table 1 presents the mean and standard devi-
ation of the intensity values of all five samples. It can be
observed that Vantablack and Kapton tape are

Figure 2. (a) A raw standard thermal image of the imaged scene. Since the Pico1024 sensor is used the image includes the net
radiation in the range from 8.0 to 14.0 mm. (b) A masked image of the materials present in the image is shown. This mask is used as the
‘true’ scenario for validation of pixel predictions. The background consists of an aluminum plate covered by Kapton tape which increases
the emissivity. The mean spectrum normalized to a sum of two16 observed from each individual sample in the image is plotted in (c).
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indistinguishable having essentially the same mean and
standard deviations. Black paint and glass show the same
behavior with almost equal mean intensities but slightly dif-
ferent standard deviation. However, both have intensities
within a standard deviation of the other, making them indis-
tinguishable by standard thermography. With our hyper-
spectral thermal imaging system, however, we are capable
of distinguishing between the samples, which initially can be
seen by observing Fig. 2c. From the figure it is immediately
seen that the glass sample has a significant dip in second-
order emission intensity around 9 mm, which is attributed
to the Si–O–Si bond.25 The remaining samples have more
similar spectra and therefore statistical regression models
were used to distinguish between these.

A principal component analysis (PCA)26,27 of the hyper-
spectral data cube revealed the six principal components
(PCs) with the highest variance, shown in Fig. 3. Figure 3g
shows the relative variance explained by each of the six
PCs. The first three components (Figs. 3a–3c) explain
91.4% of the total variance. Each successive component
contains less than 0.3% of the total variance.
The distribution of the variance in the remaining compo-
nents is seen in Fig. 3(h). Based on the data in Figs. 3(g) and

3h, it can be concluded that even though the first three
components contain the majority of the variance, it is not
until around component 15 that the variance flattens out.

Components PC1 and PC3 clearly distinguish the boro-
silicate Petri dish from the rest of the image. It can be noted
that the edge of the Petri dish has a different intensity from
the rest of the dish. This is due to the fact that the edge
walls of the Petri dish protrude from the surface of the
heated aluminum block giving a noticeable temperature dif-
ference relative to the remaining part of the glass.

The clear radial gradient across the image in Fig. 3b
suggests that this component contains information related
to temperature variations across the aluminum block or
otherwise lens aberrations. This leaves PC1 and PC3–
PC6 with the information related to material characteris-
tics. PC3 and PC5 contains a noticeable dark line between
the Vantablack and the black paint marked by red bounding
boxes. This is a region on the heated aluminum block
where the Kapton tape is overlapping and thus two layers
are present. This region is not visible on the pure thermal
image shown in Fig. 2a, which again underlines the fact that
additional information is stored in the hyperspectral
data cube.

The ability to distinguish the samples from the hyper-
spectral images was tested using the scikit-learn Logistic
Regression model. The logistic regression model is a
linear classifier, which assumes that the object can be clas-
sified based on a linear combination of its features, which in
this case are the LWIR bands. The probability that a set of
features belongs to a certain class is calculated based on a
logistic sigmoid function, and the model is fitted by mini-
mizing the cost function. The model was given five classes,
which corresponds to one class per material present in the
image. Initially, the full hyperspectral data cube was used as
input features to fit a prediction model. The fitted model
was given a balanced weight of the classes, which ensures

Figure 3. Six reconstructed images from the six first PCs following a PCA of the hyperspectral image stack shown in Fig. 2.
Additionally, insets (g) and (h) show the relative explained ratio for the PCs following the PCA. The relative variance for the initial seven
PCs is shown in (g) and (h) shows the relative variance for the last 26 PCs.

Table I. Mean grayscale intensities and standard deviations, r, for
each individual sample based on the thermal image presented in
Fig. 2.

Sample material Mean intensity r

Vantablack 227.3 5.5

Kapton tape 227.7 5.6

Black paint 210.4 2.5

Borosilicate glass 208.2 9.6

Aluminum 186.2 13.7
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that the cost function is equally biased for all classes.
Additionally, the LIBLINEAR28 solver was used to find the
global minimum of the cost function. A slightly less accurate
model can be fitted where the first five PCs are used as
input features, which increases the speed of the process.
This again underlines the promising applicability of the tech-
nique since accuracy might be sacrificed for speed in a
handheld camera.

Since computation time was no issue in this case, the
results obtained from the full hyperspectral data cube are
presented. The model was fitted to a selected region of the
hyperspectral image shown in Fig. 4a. Hereafter the full
hyperspectral data cube was fed to the model to predict
and find the samples present in the image. The results from
this prediction are shown in Fig. 4b and the performance of
the model is summarized in the confusion matrix shown in
Fig. 4c.

The confusion matrix presented in Fig. 4c has been nor-
malized for each row, and thus the main diagonal shows the
true positive rate (TPR) for each sample, which is the ratio
of true positives to the sum of true positives and false
negatives. During this analysis, focus is put on the TPR
since this makes the most sense for our application. The
highest TPR is obtained for borosilicate glass with a value of
98%. This is followed by black painted aluminum with a TPR
of 92%, Kapton tape with 83%, bare aluminum with 75%,
and Vantablack with 59%. It is important to note the fact
that five classes are defined. Therefore, a completely
random guess would on average result in a 20% TPR of
each class no matter its relative occupation of the image.

Within the area covered by Kapton tape (Fig. 2b), the pre-
diction of Kapton tape in Fig. 4b shows a slight gradient
from the corners to the center region of the image, with
the most correctly predicted pixels concentrated in the
center. Similarly, part of the Vantablack sample is mistakenly
predicted to be Kapton tape where most errors appear
near the center of the image. This pattern is very similar
to the one observed in PC2 shown in Fig. 3b, which was
ascribed to non-material-specific characteristics. Therefore,
in an attempt to improve the prediction, another model
was fitted using 69 out of 70 available PCs with PC2 as
the only one excluded. The performance of this model is
shown in Figs. 4d and 4e showing the predicted pixels and
the summarizing confusion matrix, respectively. As can be
seen in the confusion matrix in Fig. 4e, this model performs
slightly better than the previous one having all samples pre-
dicted with a TPR of at least 70%. More importantly, the
gradient observed in Fig. 4b is much less pronounced
underlining the fact that true material characteristics are
present in the spectra. Furthermore, it should be noted
that the overlapping Kapton tape ‘line’ is much more appar-
ent in Fig. 4d than 4b meaning that variations of the same
sample can be distinguished from an image.

The most surprising result is the capability of distinguish-
ing between Vantablack and Kapton tape which, as seen in
Fig. 2c, have very similar spectra. Figures 5a and 5b show
the second- and first-order mean spectra of each individual
sample, respectively. The raw mean spectra have been
ratioed against the Kapton tape spectrum, which exhibits
the highest intensity across the entire measurement range.

Figure 4. (a) The mask used to fit the logistic regression model. The dark blue region marked ‘Background’ is unused and therefore
left out of the fit. (b) The results following a prediction of the samples using the fitted model and the full hyperspectral image stack. (c)
The confusion matrix of the predictions vs. the true pixel values determined by image (b) in Fig. 2. (d) The results following a prediction
of the samples using 69 PCs. (e) The confusion matrix of these predictions vs. the true pixel values determined by image (b) in Fig. 2. For
both confusion matrices, the abbreviations Vb, BP, BG, KT, and Al have been used for Vantablack, black paint, borosilicate glass, Kapton
tape, and aluminum, respectively.
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It is immediately noticed that small variations are measured
between the two samples. These variations probably ori-
ginate from the Kapton tape, since the Vantablack sample is
expected to perform essentially as a blackbody source of
radiation. Another important feature is the fact that the
differences can be measured in each individual pixel. A visu-
alization of this is shown in Fig. 5c where the mean PC value
of components 1–11 is plotted. The standard deviation of
each component is plotted as error bars for the related
sample. As can be seen, the components 1, 2, 5, and 9
show variations, which indicate minor differences between
the two spectra.

A reproducibility and validity test has been made on
three sequentially recorded HSTIs, which show that the
measured spectra are reproducible and that a fitted
model can be used to predict the samples reasonably well
across several images. The results from this test are shown
in the online Supplemental Material.

Conclusion

This work presents a new hyperspectral thermal imaging
system capable of grabbing hyperspectral images in the
long-wave thermal range of 8.0–14.0 mm. The camera relies
on a high-resolution 1024! 768 microbolometer FPA and a
scanning FPI which filters the incident radiation.

The study presents a hyperspectral image, which is the
first of its kind in this thermal radiation range. The results
prove the applicability of a Fabry–Pérot-based hyperspectral
camera, which makes hyperspectral long-wave cameras less
complex than the currently available FT-IR-based solutions.

Images of five samples of different materials were ana-
lyzed in order to investigate for the possibility of discrimi-
nating between them. A standard thermographic image was
unable to distinguish between the different samples, while
all samples were distinguished with a TPR of 70% or more
in the HSTI.

Future improvements include optimization of the classi-
fication model, where a natural further step would be to
use a convolutional neural network that utilizes both spatial
and spectral features of the HSTI. This has recently been
used on standard hyperspectral datasets with promising

prospects.29 Additionally, future improvements include the
introduction of antireflective-coated mirrors to reduce the
total attenuation in the FPI, and multiple image summing to
improve the signal to noise in images at room temperature.
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1. Abstract 
 

Determination of the surface temperature of different materials based on thermographic imaging 

is a difficult task as the thermal emission spectrum is both temperature and emissivity dependent. 

Without prior knowledge of the emissivity of the object under investigation, it makes up a 

temperature-emissivity underdetermined system. This work demonstrates the possibility of 

recognizing specific materials from hyperspectral thermal images (HSTI) in the wavelength 

range from 8-14 µm. The hyperspectral images were acquired using a microbolometer sensor 

array in combination with a scanning 1st order Fabry-Pérot interferometer acting as a bandpass 

filter. A logistic regression model was used to successfully differentiate between polyimide tape, 

sapphire, borosilicate glass, fused silica, and alumina ceramic at temperatures as low as 34 °C. 

Each material was recognized with true positive rates above 94 % calculated from individual 

¨pixel spectra. The surface temperature of the samples was subsequently predicted using pre-

fitted partial least squares (PLS) models, which predicted all surface temperature values with a 

common root mean square error (RMSE) of 1.10 °C and thereby outperforming conventional 

thermography. This approach paves the way for a practical solution to the underdetermined 

temperature-emissivity system. 

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

2. Introduction 



 

Hyperspectral imaging is an emerging field within industry and has a variety of applications. 

Recently, hyperspectral imaging within the visible spectrum has been used widely within the 

food industry for analysis and quality assurance of meat, fruit and vegetables including 

pathogen detection.[1–3] Similarly, the near infrared (NIR) region has been used for sorting 

fruit and vegetables[4,5] where specifically the detection of aflatoxin is highly valuable.[6,7] 

Another area with huge societal benefit is the development of robust sorting of plastic 

polymers, where NIR hyperspectral imaging has been shown to play a key role.[8,9] While 

the wide application of hyperspectral thermal imaging within industry still is underway, 

several other applications have been shown. These include SO2 plume detection and 

monitoring from active volcanos,[10] mineral identification,[11–13] detection of explosive 

residues[14] and landscape scanning.[13,15,16] Common for these studies is the use of the 

Telops Hyper-Cam LW,[17] which is based on Fourier transform spectroscopy and a 

Michelson interferometer. The imaging system has a high resolution of 0.25 cm-1 and utilizes 

a cooled Mercury Cadmium Telluride (MCT) detector sensitive in the range from 7.7-11.8 

µm. Additionally, thermal emission spectroscopy has been applied in space throughout several 

missions. These include the HyTES and HyspIRI, which both are satellite spectrometers 

orbiting and performing landscape scanning of the Earth.[18,19] Additionally, custom-made 

thermal emission spectrometers were equipped on the Mars Exploration Rovers, “Spirit” and 

“Opportunity”, to detect minerals and rock types on Mars.[20–22]  

In this study a hyperspectral thermal camera based on a Fabry Pérot interferometer (FPI) is 

used to record HSTI data of a selection of materials known to have vibrational absorption 

bands in the thermal range. A full temperature series is presented covering from room 

temperature to 100 ºC. The images are analysed and statistical models are used to show that 

specific material spectra are recognizable across a wide temperature span. Following material 

recognition, a material specific partial least squares (PLS) regression model is used to predict 

the surface temperature with a RMSE of 1.53 °C. This methodology shows that it is possible 

to measure the surface temperature accurately of materials with different emissivities within 

the same image frame. Effectively, this gives a solution to the underdetermined emissivity 

problem, which previously has been attempted to solve by iterative algorithms, where some 

claim to reach temperature predictions within two standard deviations of  ±1.5 °C.[23–25]  

 

 

3. Method 



 

The hyperspectral thermal imaging system used in this study is based on a QTechnology 

QT5022 camera fitted with a Lynred Pico 1024 Gen2 1024×768 pixel bolometer sensor, which 

has a spectral range between 8 μm and 14 μm. This region is labelled the long wave infrared 

region (LWIR) and is often used for imaging due to its low atmospheric absorption on Earth.[26] 

An Ophir 35 mm, "/1 germanium objective lens is used to focus the light onto the sensor and 

a scanning FPI is placed in front of the lens acting as a variable band-pass filter (Fig. 1.).  All 

optical surfaces between the front mirror of the FPI and the sensor itself are coated with high-

efficiency broadband anti-reflective coatings. By varying the distance between the mirrors, the 

center wavelength of the filter is shifted. This is used to capture a hyperspectral thermal image 

by recording images at regular intervals while sweeping the cavity length – one image for every 

≈ 80 nm of mirror displacement. 

 

 

Fig. 1. Schematic of the FPI configuration in front of the thermal camera (not to scale). Both 

thermal mirrors consist of a stack of Ge and ThF4 on a ZnSe substrate, with optical thicknesses 

as shown in the zoom-in. The mirrors are mounted in a metal flange and the mirror distance is 

controlled by piezo actuators. Laser- and photodiodes mounted on a PCB around the perimeter 

of the mirrors keep track of the mirror separation during an imaging acquisition event. 
 

The FPI mirrors are made from a stack of germanium (Ge) and thorium tetrafluoride (ThF4) 

with zinc sulfide (ZnS) acting as a binding layer. The stack is deposited on a 5 mm thick, Ø 50.8 

mm (2 inch) substrate of zinc selenide (ZnSe) as depicted in Fig. 1. and the mirror has an average 

reflectivity of 84% in the range from 8 μm to 14 μm. During operation, the mirror separation is 

scanned in the range from ≈ 3.2 µm to ≈ 12.9 μm. This range covers the first three orders of 

the FPI at a wavelength of 8 µm which can be seen in Fig. S3. in the supplemental document. 

The full width at half maximum (FWHM) has been measured at 16 different mirror separation 



distances using a Shimadzu 8400s FTIR spectrometer. The average FWHM of the first order is 

&!"#$(&) = 480 ± 83 nm, FWHM of the second order &!"#$(() = 280 ± 41 nm, and FWHM of 

the third order is &!"#$(&) = 154 ± 17  nm. The indicated uncertainties correspond to the 

measured standard deviations. 

The mirrors are mounted in a steel flange and three piezoelectric actuators are used to control 

the mirror separation. The mirror coating itself covers Ø 43 mm of the substrate leaving room 

for the light of three 655 nm laser diodes, equally spaced around the brim on the outside of the 

mirror, to individually interfere in the cavities formed by the uncoated substrate edges. While 

scanning, the intensity of the specular reflected light is modulated due to the constructive and 

destructive interference inside the cavities. The interferogram is detected by three photodiodes 

and is also used to ensure that the mirrors remain parallel while scanning. 

The spectrum found in each pixel represents the intensity of the transmitted light as a function 

of the mirror separation. To calibrate the mirror separation axis, a HSTI of three different band 

pass filters is recorded, where the filters have the following specifications: 8226/461 nm 96%, 

10224/356 nm 77% and a 11322/498 nm 92% filter. The three numbers describing each filter 

indicate the center wavelength, the FWHM, and the maximum transmission, respectively. From 

the HSTI, a small selection of each filter is made, and the average spectrum plotted for each 

selected region. The filters have been used for calibrating the spectral axis, which is elaborated 

in the supplementary information along with transfer matrix method calculations of the FPI.[27] 

The samples imaged for material identification consist of an aluminum block (160×160×40 

mm) covered in polyimide tape in order to obtain a high emissivity background. Taped to the 

block is a piece of sapphire (Ø 30 mm), a piece of borosilicate glass (1.5×3 inch), a piece of 

fused silica (Ø 50 mm), as well as a piece of Al2O3 ceramic of 95 % purity (30×400 mm) (Fig. 

2c.). The aluminum block is placed against a heating element, which is used to control the 

temperature of the entire setup. A digital thermometer is placed in a hole drilled into the 

aluminum block to monitor the temperature. Images are then recorded at 20 different 

temperatures ranging from 27.1 ºC to 97.0 ºC. These 20 HSTIs are split into two different 

datasets where one is used for the training set and the other is used as an evaluation set. The 

training set was acquired at the following aluminum block temperatures: 27.1 ºC, 32.0 ºC, 36.5 

ºC, 43.3 ºC, 49.9 ºC, 59.0 ºC, 67.2 ºC, 74.8 ºC, 83.7 ºC, and 92.3 ºC. The evaluation HSTIs are 

recorded at aluminum block temperatures of 30.2 ºC, 34.0 ºC, 40.0 ºC, 46.7 ºC, 54.5 ºC, 63.0 

ºC, 70.4 ºC, 79.6 ºC, 88.3 ºC, and 97.0 ºC. An HSTI frame of the scene is shown in Fig. 2a. 

recorded at a mirror separation distance of 7.9 µm and a sample temperature of 97.0 ºC.  

 



 

Fig. 2. (a) Image of the samples mounted on an aluminum block using polyimide tape. The 

image is recorded at a sample temperature of 97.0 °C with a mirror separation of 7.9 µm. An 

area of each sample material is indicated by the colored squares and their average spectra are 

plotted in (b). The spectra have been offset on the y-axis for visualization purposes and the 

legend abbreviations are the following; S: sapphire, BSG: Borosilicate Glass, FS: Fused Silica, 

AC: Alumina Ceramic, and PT: Polyimide Tape. (c) The material mask which is used to fit the 

logistic regression model for material recognition. The dashed red boxes mark areas where 

double layers of polyimide tape have been used to tape the samples to the block. These regions 

are excluded from the material recognition data analysis. 
 

4. Results 
 

The overall goal of these experiments was to predict the surface temperature of materials of 

unknown and different emissivity within the same thermal image frame. Our approach is to first 

recognize the imaged material on the individual pixel level using the material specific thermal 

emission spectrum. Following a correct material recognition prediction, the PLS regression 

model belonging to the observed material is then used to predict the surface temperature from 

HSTI data sets recorded at other temperatures. 

The thermographic images are arranged in a cube with two spatial axes representing each pixel 

in an image while the third axis is spectral, containing each image recorded while scanning the 

mirrors. All images are standardized in order to reduce the contributions from temperature 

variations of the samples. This is done by centering the spectral axis, which results in a mean 

of 0 as well as scaling, which makes the standard deviation of each pixel spectrum unity. If 0 

represents the raw spectrum stored in a single pixel, the standardized spectrum, 0′, is thus 

calculated as 

 

s’ = (s – s) / s 

 



where 0̅ is the raw spectrum mean and 3 is its standard deviation. This means that all intensity 

variations of the spectra are removed, and our recognition model will therefore solely find 

material characteristics. It should be noted that slight differences in the Planck curve will affect 

standardized spectra, however, these contributions are relatively small compared to the material 

spectral features and therefore have negligible influence on the performance of the model. 

Fig. 2b. shows the mean spectra of the 50x50 px wide bounding boxes shown in Fig. 2a.. These 

bounding boxes have carefully been placed such that each box only include a single material, 

and thus Fig. 2b. shows the mean spectrum of each material. The legend abbreviations match 

the sample materials (S: sapphire, BSG: Borosilicate Glass, FS: Fused Silica, AC: Alumina 

Ceramic, and PT: Polyimide Tape). The dashed line in Fig. 2b. mark the mirror separation 

position of 7.9 µm and thereby show the selected band, which is shown in Fig. 2a. While the 

full-size image measures 1024×768 pixel, the image is cropped to a size of 800x768 to remove 

irrelevant features and reduce processing time. All images recorded during these experiments 

contain 140 spectral bands within the mirror separation range between 3.2 µm and 12.9 µm. 

Recognizing the different materials in the image is done using the multinomial logistic 

regression (MLR) function implemented in scikit-learn.[28]  

The training data set is used to fit a MLR model for each material across the temperatures 

imaged in this data set. The resulting fitted model is then used as a prediction model, which 

calculates the probability of a spectrum belonging to a particular material class from a linear 

combination of each of its spectral bands.[29] The class with the highest probability determines 

the material assigned to a given spectrum. The algorithm used in the optimization problem is 

the Newton Conjugate Gradient and the class weight is balanced to ensure equal bias for all 

classes regardless of their abundance. To fit and validate the model, a mask defining the location 

of all material classes is constructed based on one of the images from the data series which is 

shown in Fig. 2c.. 

 

 

Fig. 3. Predicted classes for HSTIs acquired at temperatures of 30.2 ºC (A), 34.0 ºC (B) and 



97.0 ºC (C) in the evaluation set using the logistic regression classification model. The color-

coded materials follow that of Fig. 2c and the abbreviations S, BSG, FS, AC, and PT belong to 

the five materials: sapphire, borosilicate glass, fused silica, alumina ceramic and polyimide 

tape, respectively. 
 

The fitted MLR model is validated on the evaluation data set and the results at three different 

temperatures are presented in Fig. 3. with corresponding confusion matrices in Fig. 4. The 

images shown in Fig. 3. are reconstructions with color codes matching the predicted material 

by the MLR model. The x-axes of the confusion matrices shown in Fig. 4. represent the 

predictions made by the MLR model and these are compared to the true classification indicated 

along the y-axis. Each row is normalized to a sum of 1, meaning that the diagonal represents 

the true positive rate (TPR), which is the ratio between the true positives and the sum of both 

true positives and false negatives. Figs. 3. and 4. both show that the MLR model predicts the 

correct material in most pixels without error. The accuracy increases with increasing 

temperature, which is caused by the increase of emitted light and thereby the signal measured 

by the camera. Figs. 3a. and 4a. indicate that a temperature of 30 °C is slightly too low for the 

MLR model to perform well, which is primarily seen in the borosilicate glass region. However, 

increasing the temperature to 34 °C causes the model to perform near perfect. As seen in Fig. 

3a.-3c. the regions marked by dashed red lines in Fig. 2c. are at low temperature classified as 

Alumina Ceramic and then at increased temperatures classified as borosilicate glass. These 

regions are double layers of polyimide tape, which is not part of the MLR model and thereby 

explain the misclassification. A single layer of polyimide tape transmits thermal radiation at 

distinct wavelengths in the LWIR range and therefore the material directly under the polyimide 

tape alters the spectrum measured in our HSTI. This have been verified during these 

experiments by FTIR measurements. The region marked PT in Fig. 2c. is therefore used alone 

for evaluating the polyimide tape predictions of the MLR model and the white region in Fig. 2c. 

is ignored during analysis.  

 



 

Fig. 4. Normalized confusion matrices describing the relationship between predicted sample 

type and the truth described by the material mask in Fig. 2c at temperatures of of 30.2 ºC (A), 

34.0 ºC (B) and 97.0 ºC (C). S, BSG, FS, AC, and PT are abbreviations for the five materials: 

sapphire, borosilicate glass, fused silica, alumina ceramic and polyimide tape. Each row is 

normalized to a sum of 1, describing the percentage of each predicted label to the true class 

label. 
 

In order to predict the surface temperature of the imaged samples, a PLS regression is performed. 

The PLS model is fitted using the training set and the performance of the model is found using 

the evaluation HSTIs. The evaluation HSTIs are not standardized before fitting the PLS model, 

since the relative intensity between each image band functions as the primary predictor. The 

PLS model is typically used in data sets where many predictors are mutually correlated. This 

model is therefore a reasonable choice in our application, since our data structure contains 140 

variables of which many correlates. This is due to the fact that the FWHM of the transmitted 

light through the FPI at a given wavelength is larger than the separation between two subsequent 

image frames in the HSTI and therefore, a significant overlap between images is present and 

two subsequent images are therefore mutually correlated. 

Following a successful fit of the PLS model to the testing set, the model is applied to predict 

the surface temperature of the evaluation set. The results are presented in Fig. 5. along with the 

root mean square error (RMSE), which summarizes the accuracy of the temperature predictions. 

The graphs in Fig. 5. show the sample number, which in this case are individual pixels plotted 

versus the temperature of that pixel. All data values are plotted for each material and the sample 

numbers have been sorted by ascending temperature. The solid orange line indicates the true 

temperature and the solid green line indicate the predicted temperature based on the PLS model. 

Since our samples have differing thicknesses and thermal conductivities, it is highly likely that 

the sample surface temperatures are different from the temperature measured of the aluminum 

block. Therefore, our system was calibrated using a temperature model for the polyimide tape 



where the temperature was measured by the thermometer inside the aluminum block which was 

assumed to match the temperature on the surface. This model was used on the polyimide tape 

taped directly to the sample surfaces to find the temperature of the polyimide tape in these areas. 

These values can then be used as an estimate of the sample surface temperature since both 

sample surface and polyimide tape are in direct contact. The temperature model was based on a 

single image frame from the HSTI in the training and evaluation data set, and was selected at a 

mirror separation corresponding to ~12 µm light where polyimide tape has a transmission of 

0 %. The results of the PLS predictions are shown in Fig. 5. and the RMSE of the predictions 

have been summarized and included in the title of each subfigure. It is seen that all materials 

are predicted within an acceptable RMSE of less than 1.5 °C.  

 

 
Fig. 5. Surface temperature predictions based on PLS models fitted on all the HSTIs in the 

training set. The PLS models have been fitted to the spectra of each individual material marked 

by the mask in Fig. 2. (c). Each individual figure shows the pixelwise surface temperature 

predictions of every material present in the image. The predictions have been sorted in order to 

match a stepwise increase in temperature. The solid orange line marked y indicates the 

measured temperature by the thermometer, which is considered the true temperature, while the 

solid green line marked 45 indicates the predicted temperatures. The root mean squared error 

(RMSE) of the entire set is indicated in every plot title and lastly the PLS number of components 

are plotted versus the RMSE of the evaluation set in the bottom right-hand figure.  

 



5. Discussion 
 

At the lowest temperature of 30 °C, the material predictions are not ideal, with the Sapphire and 

alumina ceramic recognized with TPRs of 100 %, the fused silica TPR of 81 % and the 

borosilicate glass TPR of 54 % as seen in Fig. 4a. Both silica types are falsely predicted as being 

alumina ceramic. While the predictions are not perfect the model performs significantly better 

than a random guess which would result in a TPR of 20 % since a total of five classes is present. 

The poor model performance can mainly be ascribed to low spectral signal to noise ratio (SNR) 

at 30 °C. Additionally, it has previously been shown that the exact mirror separation of the HSTI 

bands varies slightly between different data sets.[30] The small deviations in mirror separation 

between image grabbing points will effectively include extra noise in the data series, which 

again has a huge influence at low SNR. This effect, combined with slightly concave mirrors, 

due to thin film stresses, has a strong impact on the performance of the model at low SNR.  At 

34 °C, all materials are correctly identified with the lowest TPR being 94 % for borosilicate 

glass (Fig. 3b. and Fig. 4b.). From a substrate temperature of 34 °C and above, the lowest TPR 

is 94 % and at 47 °C and above, all TPR is 100 % which can be seen in Fig. S6 and S7 in the 

supplemental document.  

At 97 °C the corners of the thermal image shown in Fig. 3c. prediction mistakes on polyimide 

tape can be observed as red pixels indicating fused silica. Since these regions do not overlap 

with the area marked PT in Fig. 2c., the prediction mistakes do not show up in the presented 

confusion matrices in Fig. 4.. These prediction mistakes arise from a vignetting effect in the 

camera caused by the angle of incidence of the light entering the FPI. The effect is elaborated 

in the supplemental documentation section 3 and can be corrected by collimating the thermal 

light before entering the FPI.[31] It is expected that collimating the light prior to entering the 

FPI would improve our data, however, designing the Germanium lenses and lens system is 

beyond the scope of this work. 

The accuracy of standard thermal imaging predictions has been made in order to compare to the 

PLS predictions and to show the importance of the emissivity settings. Eight conventional 

thermal images were grabbed of the experimental setup and the polyimide tape-region was used 

for a linear fit of the intensity versus temperature of the aluminum block. The surface 

temperature for the remaining samples were then corrected in a similar manner as described 

earlier. A summary of the data set is presented in section 4 in the supplemental document. Here, 

a table summarizes the prediction error of the surface temperature using conventional 

thermography. At a PT temperature of 73.2 ºC the sapphire would at an equivalent emitted 

intensity have a temperature of 88.2 ºC resulting in an error of 15 ºC. Equivalent errors are 



found for alumina ceramic, fused silica and borosilicate with values of 1.9 ºC, 9.4 ºC, and 6.0 

ºC respectively. Thus, comparing to the RMSE of the predictions shown in Fig. 5. the PLS 

models outperforms conventional thermography significantly. Additionally, the RMSE is well 

within the accuracy of the temperature emissivity separation algorithms which previously has 

been presented in the literature to have a two standard deviation of ±1.5 ºC.[25] 

These findings show that it is possible to recognize the material specific features in the thermal 

emission spectra using a Fabry Pérot-based hyperspectral thermal imager at temperatures near 

room temperature. These material specific spectra can the subsequently be used to predict the 

surface temperature of the sample under investigation. The performance of such a prediction 

has been shown to beat conventional thermography, given that the emissivity of the sample is 

unknown.  

6. Conclusion 
 

In summary, hyperspectral thermal images have been recorded of samples of polyimide tape, 

sapphire, borosilicate glass, fused silica, and alumina ceramic. 20 HSTIs have been recorded at 

different temperatures ranging from 27.1 °C to 97.0 °C. Half of the data set has been used to fit 

a logistic regression model to recognize the material characteristic spectra of the different 

samples. This model was used to predict the materials present on the other half of the HSTIs 

resulting in TPR values above 94 % for all samples at temperatures of 34 °C and above. This 

shows that the emission spectra of materials are measurable by a Fabry-Pérot-based 

hyperspectral camera and that the spectra contain significant information at temperatures as low 

as 34 °C. The hyperspectral imaging system was used to predict the surface temperature of the 

samples present in the experimental setup based on sample specific PLS models. The models 

predicted the surface temperature with a common RMSE of 1.10 °C.  

While the room temperature measurements showed weak predictions, we propose several 

improvements in order to achieve FPI-based hyperspectral images at room temperature. These 

include stress compensated FPI thermal mirrors in order to reduce spectral broadening due to 

mirror curvature and improved control software for the mirror scanning in order to get absolute 

mirror separations during the imaging sequence. This would allow us to align the spectral axis 

in the post-acquisition phase, and thereby eliminate the need for calibration. A significant 

improvement includes the mentioned option of collimating the thermal light before entering the 

FPI cavity, which again would reduce wavelength shifting and thereby increase the 

homogeneity of the measured thermal emission spectra across the entire sensor array.  

Lastly, the addition of overlapping RGB images would make it possible to conduct even more 

advanced data analysis, which would allow for classification of materials of equal thermal 



spectra but differing color. Additionally, the boundaries of materials can be found using edge 

detection from the RGB camera, which could reduce the misclassification, by binning spectra 

within the same boundaries.  
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